Computer Vision and Artificial Intelligence

Gang Hua

Gang Hua, Ph.D.

Principal Researcher/Research Manatger

Microsoft Research Asia

firstnamelastname AT gmail.com 

[Home][Research][Publications][Services][Collaboration]

[Vision Lab][Teaching] @Stevens Institute of Technology


CS 558 Computer Vision

Term: Spring 201
Instructor:
Prof. Gang Hua
Time:
Wednesday 6:15pm – 8:45pm
Building/Room: BC 110 
Office Hour
: Wednesday 4:00pm—5:00pm by appointment
Office Hour Location: Lieb Building/Room 305
Teaching Assistant:
Haoxiang Li
Course Assistant
: Lishuo Zhuang
Course Website
: http://www.cs.stevens.edu/~ghua/ghweb/teaching/CS558Spring2013.htm

Course Overview:
Research on computer vision strives for building a machine that can see, which refers to the visual perception process of sensing the scene/object geometry, and recognizing the the scene/object/action/activities from a single or a set of images or a video clip. In this course, we will explore various fundamental topics in this area, including image formation, feature detection, segmentation, multiple view geometry, recognition and learning, and visual motion analysis.  This course is intended for graduate students and senior undergraduate students.

Prerequisites:
CS 590 or CS 385 or CS 182, and MA 232

Text Books:
Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer, (Required) (PDF downloadable version at http://szeliski.org/Book )

Grading:
The students will be graded based on course participation (10%), two written homework 10% (5% each), 4 Course Projects ( Project #0 -- 5%, Project #1 -- 10%, Project #2--10%, Project #3 -- 15% ) and a Final Project (Project #4 -- 10% competition, 5% presentation, 25% final report). Final grade: A-- 90% to 100%; B--80% to 89%; C-- 70% to 79%; D--60% to 69%; F -- < 60% .

Schedule:

Week

Date

Topic

Reading

Homework

Slides

1

01/16/2013

Introduction to Computer Vision

Szeliski Ch1 & Matlab Tutorial

Project #0 ( Mini Matlab Project )

Lecture I

2

01/23/2013

Image Formation: Cameras

Szeliski Ch. 2.1

Project #0 due, HW#1 Out ( Camera  )

Lecture II

3

01/30/2013

Image Formation: Light, Shade, and Color

Szeliski 2.2 & 2.3

HW#1 Due, HW#2 Out ( Light )

Lecture III

4

02/06/2013

Convolution, Filtering, and Edge Detection

Szeliski 3.2, 4.2

HW#2 Due, Project #1 Out ( Hybrid Image )

Lecture IV

5

02/13/2013

Segmentation and Grouping

Szeliski 5

 

Lecture V

6

02/20/2013

Features: Corner&Blob Detection, Descriptor

Szeliski 4.1

Project #1 Due, Project #2 ( Local Features )

Lecture VI

7

02/27/2013

Fitting: Line Fitting,RANSAC, Hough Transform

Szeliski 4.3.2

 

Lecture VII

8

03/06/2013

Visual Geometry: Single view and Epipolar Geometry

Szeliski 7.1 & 7.2

Project #2 Due, Project #3 Out ( Epipolar )Images for P3, by Courtesy of K. Grauman Lecture VIII

 

03/13/2013

Spring Recess

   

 

9

03/20/2013

Object Recognition (1)

 

Lecture IX

10

04/03/2013

Object Recognition (2)

Szeliski 10.3
ICCV 2009 Short Course on Object Recognition
Project#3 Due, Project #4 Out (Recognition)
Dataset: [Graz02]Original source from http://www.emt.tugraz.at/~pinz/data/GRAZ_02/

Lecture X

11

04/03/2013

Stereo Vision: Bi-nocular and Multi-view Stereo

    Lecture XI

 12

04/10/2013

Face Detection and Recognition

 

 

Lecture XII

13

04/17/2013

Motion: Visual Tracking and Optical Flow

     

14

04/23/2013

Q&A for Final Project

 

 

 

15

05/08/2013

Final Presentation and Competition & Final Report Due

Project #4 Presentation & Results Due

Site Meter