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Abstract

How to train a binary neural network (BinaryNet) with both
high compression rate and high accuracy on large scale
datasets? We answer this question through a careful analysis
of previous work on BinaryNets, in terms of training strate-
gies, regularization, and activation approximation. Our find-
ings first reveal that a low learning rate is highly preferred
to avoid frequent sign changes of the weights, which often
makes the learning of BinaryNets unstable. Secondly, we pro-
pose to use PReLU instead of ReLU in a BinaryNet to con-
veniently absorb the scale factor for weights to the activation
function, which enjoys high computation efficiency for bi-
narized layers while maintains high approximation accuracy.
Thirdly, we reveal that instead of imposing L2 regularization,
driving all weights to zero which contradicts with the setting
of BinaryNets, we introduce a regularization term that en-
courages the weights to be bipolar. Fourthly, we discover that
the failure of binarizing the last layer, which is essential for
high compression rate, is due to the improper output range.
We propose to use a scale layer to bring it to normal. Last
but not least, we propose multiple binarizations to improve
the approximation of the activations. The composition of all
these enables us to train BinaryNets with both high compres-
sion rate and high accuracy, which is strongly supported by
our extensive empirical study.

Introduction
Research on binary neural network, which binarizes both the
weights and activations of a full precision neural network,
has been an active topic (Kim and Smaragdis 2016; Lin et al.
2015; Courbariaux and Bengio 2016; Rastegari et al. 2016;
Zhou et al. 2016). The BinaryNet has demonstrated to be
quite effective as it can
• compress the network by 32× theoretically, when com-

pared with full precision networks in float point;
• reduce the computation and accelerate the inference speed

since the 32-bit floating point multiply accumulations can
be replaced by 1-bit xnor-popcnt operations.
Recent methods along this line, such as BNN (Cour-

bariaux and Bengio 2016), XNOR-net (Rastegari et al.
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Table 1: Comparison of different methods on ImageNet
dataset. The compression rate (denoted as Comp. rate in the
table) considers the overall parameters of the network. Both
top-5 and top-1 accuracies are presented in the last column.

Methods Model size Comp. rate Accuracy(%)

AlexNet 232 MB1 1× 80.2/56.6
BNN 22.6 MB 10.3× 50.4/27.9

XNOR-net 22.6 MB 10.3× 69.2/44.2
DoReFa-net 22.6 MB 10.3× − /49.82

Our Method 1.23 MB 23.6× 75.6/51.4

2016) and DoReFa-net (Zhou et al. 2016), have achieved
promising results. However, just as shown in Table 1, there
is still a huge hurdle to put these methods in practice due
to the limited compression rate and accuracy on large scale
datasets such as ImageNet (Russakovsky et al. 2015).

For the issue of compression rate, to make the network
easier to train and guarantee reasonable accuracy, all previ-
ous methods kept both the first and last layers in full preci-
sion. Of course when the trained model is used as a feature
extractor, the compression rate is not affected. But once it is
utilized for classification in real scenarios, the overall com-
pression rate is severely degraded just as shown in Table 1.

For the issue of accuracy, previous works (Rastegari et
al. 2016; Zhou et al. 2016) have attempted to directly apply
BNN to large datasets such as ImageNet, but only poor per-
formance is obtained. Since then, much attention has been
paid to relaxing the binary constraints, such as introducing
scale factors (Rastegari et al. 2016) or using more bits with
activations (Zhou et al. 2016). Although obvious accuracy
gain is achieved, a careful analysis on the failure of BNN
on large datasets has been largely overlooked. We argue that
clearly figuring out the reason why BNN failed to obtain
high accuracy on large datasets is important because it can
guide us to design better training strategies for BinaryNets.

In this paper, we simultaneously address the low com-
pression rate and the low accuracy of previous works on

1Model size of AlexNet is 249 MB reported in previous work,
our result is calculated based on the configuration in Caffe.

2The accuracy with activations of 2 bits is adopted for fair com-
parison because we approximate the activations two times.



training BinaryNets on large scale datasets through a care-
ful analysis of why these previous works failed to address
these two issues, with respect to training strategies, regular-
ization, and activation approximation. Figure 1 shows what
improvement can be brought through our work.

To obtain higher compression rate, we first conduct a
careful analysis of the dramatic accuracy drop in DoReFa-
net (Zhou et al. 2016) when binarizing the last layer. We
found that this is caused by the extreme large variation of
the output from the last layer after binarization. As a result,
we propose to add an adaptive scale parameter after bina-
rizing the last layer, which can effectively boost the com-
pression rate without hurting the accuracy. Then, a newer
and smaller baseline model is adopted to further improve
the overall compression rate. By combining these two to-
gether, we achieve a compression rate of 189× compared to
AlexNet and a model size of only 1.23 MB.

To obtain higher accuracy, we start by analyzing why
BNN performs poorly on large dataset such as ImageNet.
We found that this is mainly due to improper training strate-
gies, which manifests simple but very effective training
strategies for the BinaryNet that improve the accuracy by
more than 22% in our experiments. We further propose mul-
tiple binarizations in addition to modifying the network ar-
chitecture to further improve the accuracy of the BinaryNet.

Our contributions in this work are three-fold:
• we revisit and analyze the poor performance of BNN on

large datasets and failure cases of binarizing the last layer
in binary networks, and propose effective training strate-
gies for the BinaryNet;

• we propose multiple binarization and present step-by-step
on how to train a BinaryNet with both high compression
rate and high accuracy at the same time;

• our final binarized model has an amazing size of only 1.23
MB, while achieves the current state-of-the-art accuracy
on the ImageNet dataset among all the BinaryNets.

Related Work
Inspired by the sweeping win in the image classification
challenge (Krizhevsky, Sutskever, and Hinton 2012), deep
Convolutional Neural Network (DCNN) has made quantum
leap in many areas of computer vision, including object de-
tection (Sermanet et al. 2013; Girshick et al. 2014; Girshick
2015; Ren et al. 2015), semantic segmentation (Long, Shel-
hamer, and Darrell 2015; Chen et al. 2015), and so on.

However, when it comes to deploying the state-of-the-art
CNN-based visual models towards real-world systems, the
large memory consumption and computing demand are of-
ten unbearable for common computing platforms such as
portable or wearable devices. To solve this issue, substan-
tial research efforts are made and various approaches have
been proposed recently. These include matrix decomposi-
tion (Denil et al. 2013; Denton et al. 2014; Lebedev et al.
2014), weight quantization (Sun and Lin 2016; Gupta et al.
2015; Gong et al. 2014), network pruning (Liu et al. 2015;
Han et al. 2015; Han, Mao, and Dally 2016) etc.

Among these methods, a number of methods on training
BinaryNets (Kim and Smaragdis 2016; Courbariaux, Ben-
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Figure 1: In terms of both compression rate and accuracy,
the gains that can be achieved by our proposed method.

gio, and David 2015; Lin et al. 2015; Courbariaux and Ben-
gio 2016; Rastegari et al. 2016; Zhou et al. 2016) have
been proposed which foster the development of BinaryNets
improving on both compression rate and accuracy. Here
we mainly focus our discussion on methods in which both
weights and activations are binary-valued, since this kind of
network not only reduces the memory storage, but also is
more computational efficient.

To the best of our knowledge, BNN (Courbariaux and
Bengio 2016) is the first work that produces a purely Bina-
ryNet by simultaneously binarizing both the weights and the
activations, and achieves comparable accuracy to full preci-
sion network on datasets such as CIFAR-10 and CIFAR-100.
But previous works (Rastegari et al. 2016; Zhou et al. 2016)
showed that poor accuracy is obtained when applying BNN
directly to large datasets such as ImageNet. In this paper,
we reveal that the poor accuracy is due to improper train-
ing strategies. If effective training strategies are adopted, the
accuracy can be significantly improved.

XNOR-net (Rastegari et al. 2016) proposes to improve
the performance of BNN with a better approximation by in-
troducing scale factors for both weights and activations dur-
ing binarization. However, the extra full precision convolu-
tion is needed for calculating the scale factors of the acti-
vations, which makes the computation of convolution layers
very complex. In order to mitigate this issue, we propose an
alternative that removes the scale factor both in weights and
activations, and replace the ReLU activation function with
PReLU, which does not increase the parameter size but is
simpler and more efficient than XNOR-net.

DoReFa-net (Zhou et al. 2016) aims at boosting the per-
formance by approximating the activations with more bits.
Even though they claimed that the last layer could be bina-
rized as well, they suffered severe accuracy drop when doing
so. This forces them to instead adopt full precision in the last
layer to guarantee good accuracy. However, this made their
model compression rate to be largely limited when taking
the overall parameter size into consideration. We conduct a
detailed analysis on this problem and propose to solve it by
adopting a scalar layer after the last binarized layer.

In this paper, we focus on how to train BinaryNets with
both high compression rate and high accuracy. We empha-
size that proper training strategies are actually as important
as how to do better approximation, which was largely over-



Table 2: Results under different learning rates and activation
functions. In this table, the last layer is in full precision.

Methods Learning Activation Comp. Accuracy(%)rate function rate

BNN 0.01 ReLU 6.02× 43.5/20.9
BNN 0.0001 ReLU 6.02× 61.3/36.4
BNN 0.0001 PReLU 5.98× 65.6/41.2

looked by the previous works. Moreover, we solve the prob-
lem of binarizing the last layer and propose multiple bina-
rizations. As a result, a 1.23 MB model is achieved with an
accuracy outperforming the state-of-the-art method.

Our Approach
In the section, we present in detail how we train a Bina-
ryNet with both high compression rate and accuracy. We
first revisit and carefully examine the training strategies for
BNN (Courbariaux and Bengio 2016), which was largely
overlooked by previous works. We show that BNN can
achieve quite reasonable results with proper training strate-
gies even without complex approximation methods. Then
we elaborate on how to solve the bottlenecks limiting the
compression rate and the accuracy.

Effective training strategies for BinaryNet
As the experiment in (Rastegari et al. 2016) showed, training
a BNN in the same way as training a full precision network
always achieves poor accuracy. This implies that BinaryNet
has its own properties such that directly adapting conven-
tional training method is not desirable. Through our care-
ful examination, we identify that there are three factors that
are critical for BinaryNet training, i.e., the learning rate, the
scale factor, and the regularizer. These factors seem to be
natural, but we argue that special considerations need to be
taken for effectively training BinaryNets with high accuracy.

The learning rate. The initial learning rate for full preci-
sion DCNN is commonly proposed to be 0.01. Facilitated by
batch normalization (Ioffe and Szegedy 2015), the network
can be trained with a much larger learning rate, e.g., 0.05.

But the situation is quite different for BNN. As shown
in Figure 3(a) and Table 2, when we set the learning rate
to 0.01, the accuracy curve is fluctuating and the final top-
5 accuracy is only 43.5%, far from the accuracy with full
precision. So why this happens? Our examination starts from
how binarization is conducted. Recent work on binarization
follows a deterministic way proposed by (Courbariaux and
Bengio 2016), i.e.,

wb =

{
+1 w ≥ 0,

−1 otherwise.
(1)

This indicates that only the signs of real-valued weights
are important in BinaryNets. So we conjecture that if a high
learning rate is adopted, there might be too many weights
that frequently change signs, which introduces instability to
the network training.

Table 3: Results of adopting full precision or binarized last
layer. In this table, The initial learning rate is 0.0001 and the
activation function is PReLU.

Methods Last Scale Comp. Accuracy(%)layer layer rate

BNN Full No 5.98× 65.6/41.2
BNN Binary No 27.1× 61.0/35.8
BNN Binary Yes 27.1× 64.6/39.3

To consolidate our analysis, we have the statistics on how
many weights are changing their signs under different learn-
ing rates during BNN and full precision network training.
The results are shown in Figure 2. It can be observed that,
under the same learning rate of 0.01, the sign changes for
BNN is nearly 3 orders of magnitude larger than that of a
full precision network. Only when the learning rate of BNN
is lowered to 0.0001, the two results become close.

Hence we conclude that a lower learning rate is more
preferred for training BNN to avoid frequent sign changes.
Our experiments show that when the learning rate is low-
ered to 0.0001, a tremendous accuracy gain is obtained and
BNN can even achieve comparable results with XNOR-net.
This finding manifests that the initial learning rate for BNN
should be far less than that of full precision network if we
want to guarantee high accuracy. (Wu 2016) in the earlier
short draft gets just the same conclusion with us, but with
a totally different understanding on what happens when a
large learning rate is adopted. (Rastegari et al. 2016) trained
BNN with an initial learning rate of 0.1, so only a top-5 ac-
curacy of 50.4% was obtained on ImageNet.

The scale factor. To improve the representation, the
XNOR-net (Rastegari et al. 2016) introduces real-valued
scale factors during binarization. For weights with shape of
(N,C,H,W ), where N , C, H , and W denote the numbers
of the output and input, and the height and width of the ker-
nels respectively, each (C,H,W ) shares a scale factor and
there are N scale factors in one layer. For activation, it be-
comes quite complex. Firstly, a matrix A is calculated by av-
eraging the absolute values of elements in the input feature
map I across the channels, i.e., A =

Σ‖I:,:,i‖
c . Then, the ma-

trix A is convolved by a kernel k ∈ Rw×h with kij = 1
w×h

to obtain the scale matrix for the activation K.
This method does improve the accuracy. However, it

makes the convolution procedure complex and inefficient
due to the way it calculates the scale factors for weights and
activations. To mitigate this issue, we propose an elegant al-
ternative, where both weights and activations are directly bi-
narized without any scale factor according to Eq(1), but a
PReLU (He et al. 2015) layer is utilized instead of a ReLU
layer as the activation function. This means that we omit the
scale factors for activations and move the scale factors for
weights to the activation function.

This modification brings two benefits. On one hand, this
ensures that the convolution layers can all be carried out
purely by xnor-popcnt operations, thus being computational



Names for each layer
conv1 cccp1 cccp2 conv2 cccp3 cccp4 conv3 cccp5 cccp6 conv4 cccp7 cccp8

pe
rc

en
ta

ge

10-4

10-2

100

102
Full with lr=0.01 BNN with lr=0.01 BNN with lr=0.0001

Figure 2: The percentages of sign change in each layer with
different learning rates. The y axis is shown in log.

efficient. On the other hand, it improves the accuracy com-
pared with BNN with no scale factor. Table 2 shows that our
method improves the top-5 accuracy by 4.3%.

The regularizer. A good regularization term is essential
for a deep neural network to obtain robust generalization ca-
pacity. In a full precision DCNN, a L2 regularization term,
which tends to decrease the magnitude of the weights and
helps prevent overfitting, is widely adopted.

However, the L2 regularization is contradictory to what
a binary network wants to achieve. In a binary network,
the real-valued weights are favored to be close to +1 or
−1, because less binarization error will be introduced when
weights are binarized as Eq 1. So if a L2 regularization term
is adopted when training BNNs, which favors to drive the
weights to near zero, the loss often jitters heavily or even
fails to converge as shown in the red curve of Figure 3(c).

To address this problem. we propose another kind of reg-
ularization term which is suitable for a BinaryNet. It takes
the following form, i.e.,

J(W,b) = L(W,b) + λ

L∑
l=1

Nl∑
i=1

Ml∑
j=1

(1− (Wl,ij)
2) (2)

where L denote the number of layers and Nl and Ml denote
the dimensions of the weight matrix in the lth layer. The
L(W,b) is the task-related loss term such as a softmax loss
in the classification task. The second term is a regularization
term and the parameter λ controls the relative importance
of the two terms. It can be seen that, in this formulation,
the weights are piloted to 1 or −1 other than to 0 as in a
L2 regularization, therefore it aligns with what a BinaryNet
favors. Just as shown in Figure 3(c), the loss curve becomes
smooth and stable after adding the proposed regularization
term in Eq 2.

Training BinaryNets with high compression
To make the training easier and guarantee reasonable per-
formance, in previous work (including BNN, XNOR-net and
DoReFa-net), both the first layer and the last layer are kept in
full precision. If the model is used as a feature extractor, the
compression rate is not affected. But once it is used for clas-
sification, the whole compression rate is severely degraded
as shown in Table 1. This degradation is mainly due to the
last layer which often occupies large number of parameters.

Table 4: Comparison between our method and DoReFa-net
after binarizing the last layer. For fair comparison, activa-
tions of our method are also binarized with 2 bits.

Methods Last Scale Comp. Accuracy(%)layer layer rate

DoReFa-net Full No 10.3× − /47.1
DoReFa-net Binary − 31.4× − /40.3

BNN Binary Yes 27.1× 70.4/45.8

Table 5: Results before and after multiple binarizations. A
denotes activation.

Methods Bits of A Comp. rate Accuracy(%)

BNN 1 27.1× 64.6/39.3
BNN 2 27.1× 70.4/45.8

BNN (expand) 2 23.6× 75.6/51.4

Why directly binarizing the last layer fails. However,
when the last layer is changed from full precision to bi-
nary, not only the network becomes very difficult to train,
but also the performance drops a lot. This problem has been
observed by previous work. To obtain a high compression
rate, DoReFa-net has tried to binarize the last layer, but as
shown in Table 4, obvious accuracy drop is observed.

The significantly decreased accuracy is due to the ex-
tremely large variation range of the output after binarizing
the last layer. Denote N to be the input channels of the last
layer. Once both the inputs and the weights of the last layer
are binarized, the range of the output value is [−N,N ]. Typ-
ically, N is set to 1024 in our baseline network and to 4096
in AlexNet. If the output with such large variation range is
fed into the softmax function, which is often used for image
classification task, it is extremely easy to step into the sat-
uration region. Therefore, the training becomes much more
difficult especially when it is done with a large learning rate.

Improving the overall compression rate. To improve the
compression rate and reduce the model size of BinaryNet to
be applicable to real applications, we propose to add a scale
layer before feeding the output of the binarized last layer
into the softmax function. It should be noted that this strat-
egy has also been found by (Wu 2016), but it is not the only
factor for achieving high compression rate in our binary net-
work, which will be further demonstrated in Section 4. The
scale layer has only a scalar parameter which is learnable
and initialized to be a small value (0.001 in our experiment).
As illustrated in Table 3, this improves the compression rate
from 6.02× to 27.1× in NIN-net with only 1% top-5 accu-
racy drop compared with the counterpart network with the
last layer in full precision, which demonstrates the effective-
ness of the proposed strategy.

Training BinaryNets with high accuracy
With strategies proposed above, not only the recognition
accuracy of the BinaryNet is tremendously improved from
50.4% reported in XNOR-net to 64.6%, but also the com-
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Figure 3: The effectiveness of our proposed strategies on training BNN. (a) The learning rate. (b) The activation function. (c)
The regularizer. (d) The scale layer.

pression rate is significantly improved from 6.02× to 27.1×.
But for accuracy, there is still a large margin between the

accuracy of state-of-the-art BinaryNets and the accuracy of
full precision networks. To further improve the accuracy, we
first propose multiple binarizations, which can significantly
improve the accuracy but without sacrificing the compres-
sion rate. Then we propose to properly expand the baseline
network with only minimal compression rate drop.

Multiple binarizations. In BNN, both the input activa-
tions Al−1 and weights Wl of the lth layer are directly bina-
rized, i.e., Hl−1 = sign(Al−1) and Bl = sign(Wl). Here,
Hl−1 and Bl are the binarized activations and weights, re-
spectively. To improve the accuracy, but maintain the same
compression rate as in BNN, we propose to apply multiple
binarizations for activations.

It is carried as follows. For i = 1, Hl,1 is the sign of Al
and αl,1 is the average absolute value of Al. For i > 1,
Hl,i and αl,i is calculated in the same way but based on
the residue approximation error from step i− 1, i.e., El,i =
Al −

∑i−1
j=1 αl,j ∗Hl,j . Thus, Al is approximated as follows

Al ≈
m∑
i=1

(αl,iHl,i), (3)

where m is the number of times that the activations are bi-
narized. So after multiple binarizations, to take the full con-
nected layer as an example, the output Ol is calculated as

Ol = Wl · Al−1

≈
∑m
i=1(αl−1,ixnor-popcnt(Bl,Hl−1,i)),

(4)

where the · denotes the matrix multiplication and
xnor-popcnt(·, ·) denotes the xnor-popcnt operation between
two binarized matrices with which BinaryNet can not only
get a high compression rate, but also obtain high inference
speed compared with a full precision network.

The results before and after multiple binarizations of ac-
tivations are presented in Table 5, it can be observed that
when we adopt m = 2, the top-5 accuracy boosts by 5.8%.

Notably, although multiple binarizations can boost the ac-
curacy, it also increases the computation complexity by m

times. So we adopt m = 2 to strike for the right balance
between the inference speed and the accuracy.

DoReFa-net (Zhou et al. 2016) also adopts a similar strat-
egy by using m bits for activations, which is suitable for
fixed-point computation such as on FPGA devices, on which
numbers in arbitrary bits can be conveniently represented.
However, our method is preferable to general computation
platforms such as on Intel CPU, GPU, and ARM.

Boosting accuracy with minimal memory overhead.
Another alternative to improve the accuracy is to modify
the network itself. It is reasonable because the representa-
tion capacity of the baseline network is obviously shrank af-
ter binarization. However, how to modify the network with
minimal memory overhead while boosting the performance
remains an issue.

As a guideline, (Han et al. 2015) has shown that param-
eters in the lower layers are less redundant, and hence less
likely be pruned during sparsification. This implies that, to
enhance the representation capacity of BinaryNets, parame-
ters in lower layers should be expanded. One big advantage
with this design is that lower layers often has less parame-
ters than higher layers in a network, so expanding the lower
layers will cause less compression rate drop.

Inspired by this finding, we propose an expanded version
of the baseline network, which markedly improves the accu-
racy while still maintains a high compression rate of 23.6×.
As shown in Table 5, a 5.4% accuracy gain is achieved with
a sacrifice of compression rate from 27.1× to 23.6×.

Algorithm 1 demonstrates the whole procedure for train-
ing a BinaryNet with all the strategies we proposed.

Experiments
Our method is evaluated in terms of compression rate and
accuracy. To measure the compression rate, we take all the
parameters in the network including parameters in the first,
the last, and the activation function layers into consideration.
We measure the accuracy by performing the image classifi-
cation task on the large-scale ImageNet dataset.

Our proposed training strategies and methods improving
the compression rate and the accuracy are universal and can
be applied to any kinds of DCNN architecture. To pursue a



Table 6: Comparison of different methods on the ImageNet dataset. The compression rates inside/outside brackets are the results
compared with the baseline/AlexNet model. bef. and aft. denote the model size before and after binarization, respectively.

Methods Base model Bits of A Last layer Comp. rate Model size (bef.) Model size (aft.) Accuracy(%)

BNN AlexNet 1 Full 10.3× 232MB 22.6MB 50.4/27.9
XNOR-net AlexNet 1 Full 10.3× 232MB 22.6MB 69.2/44.2
XNOR-net ResNet-18 1 Full 70×(13.4×) 44.6MB 3.34MB 73.2/51.2
DoReFa-net AlexNet 2 Full 10.3× 232MB 22.6MB − /49.8
Our method AlexNet 2 Binary 31.2× 232MB 7.43MB 71.1/46.6
Our method NIN-net 2 Binary 189×(23.6×) 29MB 1.23MB 75.6/51.4

high compression rate, we adopt NIN-net (Lin, Chen, and
Yan 2013), a much smaller network than the networks used
in previous works, as the base model in our experiment. We
compare our method with three recent works on BinaryNets:
BNN (Courbariaux and Bengio 2016), XNOR-net (Raste-
gari et al. 2016), and DoReFa-net (Zhou et al. 2016).

Implementation details
For the pre-processing of ImageNet dataset, firstly, all the
images are resized to 256 × 256. Then, before sending im-
ages to the network, we randomly crop 224 × 224 image
patches with mean subtraction and randomly flipping. No
other data augmentation tricks such as contrast adjustment
and multi-scale is adopted. We hold out part of training im-
ages for hyper-parameter tuning and the final model is eval-
uated on the validation dataset with only single center crop.

For the hyper-parameters, unless otherwise specified, the
initial learning rate is set to 0.0001 and divided by 2 once
the training loss stops decreasing. The parameter λ is set to
5× 10−7 and the batch size is set to 256.

Just as previous works did, batch normalization layer is
used before each binary convolution layer and ADAM is
used as the solver. We keep the first layer in full precision
because it has negligible influence on the compression rate
but is essential for high accuracy. We implement our work
on Caffe (Jia et al. 2014).

Given the limited space available, how the overall com-
pression rates presented in the tables of this paper are calcu-
lated will be illustrated in detail in our supplementary mate-
rial, only the final results are given here.

Image Classification Results on ILSVRC2012
Table 6 shows the final results of our method compared with
previous works with different methods and different models.
Our result is based on NIN-net, a 4-layer Network in Net-
work model with a model size of 29MB and sightly better
results than AlexNet. But we have modified the network as
described in Section 3.3 by expanding the output channels
of the first two cccp layers from 96 to 128 and the kernel
size of the first four cccp layers from 1× 1 to 3× 3.

Our method achieves a compression rate of 189× com-
pared with AlexNet and 23.6× compared with the full pre-
cision NIN-net model, which results in a compressed model
of only 1.23MB. These results are mainly attributed to the
scale layer we propose, which successfully solves the prob-
lem of binarizing the last layer and improves the compres-

sion rate from 6.02× to 23.6×, and the small baseline model
we choose which contributes 8× compared with AlexNet.

Algorithm 1 Training a L−layers BinaryNet.
Require: a minibatch of inputs and targets (A0, Y ∗), previ-

ous weights W , previous PReLU parameters P , previous
BatchNorm parameters θ, regularization term coefficient
λ, and previous learning rate η.

Ensure: updated weights W t+1, updated PReLU parame-
ters P t+1, updated BatchNorm parameters θt+1.
1. Computing the parameters gradients:
1.1 Forward propagation:
for l := 1 to L do
Bl ← sign(Wl)
Abl−1 ← Al−1 # Abl =

∑m
i=1(αl,iHl,i)

Ol ←
∑m
i=1(αl−1,ixnor − popcnt(Bl, Hl−1,i))

Sl ← PReLU(Ol, Pl)
Al ← BatchNorm(Sl, θl)
if l = L then
YL ← Scale(AL) # scale layer
C ← Loss(YL, Y

∗)
end if

end for
1.2 Backward propagation:
Compute gAL

= ∂C
∂AL

knowing AL and Y ∗

for l := L to 1 do
(gSl

, gθl)← BackBatchNorm(gAl
, Sl, θl)

(gOl
, gPl

)← BackPReLU(gSl
, Ol, Pl)

gWl
← gOl

Abᵀl−1

gAl−1
← (Bᵀ

l gOl
) ◦ 1|Al−1|�1

end for
2. Accumulating the parameters gradients:
for l := 1 to L do
θt+1
l ← Update(θl, η, gθl) # using Adam solver

P t+1
l ← Update(Pl, η, gPl

)

W t+1
l ← Clip(Update(Wl, η, gWl

),−1, 1)
end for

In terms of accuracy, our method outperforms previous
state-of-the-art methods and even is much better than the
newest ResNet-18 model by 2.4% with superior compres-
sion rate. This credits to the effective strategies we propose
for BinaryNet training and the multiple binarization which
approximates the full precision activations more accurately.

It should be noted that DoReFa-net also reported a top-1



accuracy of 53.0% on ImageNet with AlexNet, but this is
achieved by approximating the activations with 4 bits, train-
ing BinaryNet with last layer in full precision, and initial-
izing the network with full precision model. However, not
pursuing a single high indicator, our method aims at having
a good balance among three practical aspects: the accuracy,
the compression rate, and the computational efficiency.

Conclusion and Future Work
In this paper, we address the problem of how to train a com-
pact BinaryNet with high accuracy on large scale dataset.
Firstly, we reveal that low learning rate, the scale factor, and
better regularization are three critical factors to guarantee
high accuracy and computational efficiency for BinaryNets.
Moreover, we solve the problem of severe accuracy drop af-
ter binarizing the last layer, which is essential for high com-
pression rate. Finally, we propose multiple binarizations to
further improve the accuracy of BinaryNets. The final result
shows that the proposed method achieves the state-of-the-art
compression rate and accuracy.

Our future work on this topic will focus on proposing bet-
ter optimizing method for BinaryNet training to further im-
prove the accuracy.
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