
Similarity Learning on an Explicit Polynomial Kernel Feature Map for Person
Re-Identification

Dapeng Chen †, Zejian Yuan †, Gang Hua‡, Nanning Zheng†, Jingdong Wang §

† Xi’an Jiaotong University ‡Stevens Institute of Technology §Microsoft Research

Abstract

In this paper, we address the person re-identification
problem, discovering the correct matches for a probe per-
son image from a set of gallery person images. We fol-
low the learning-to-rank methodology and learn a similari-
ty function to maximize the difference between the similarity
scores of matched and unmatched images for a same per-
son. We introduce at least three contributions to person
re-identification. First, we present an explicit polynomi-
al kernel feature map, which is capable of characterizing
the similarity information of all pairs of patches between t-
wo images, called soft-patch-matching, instead of greedily
keeping only the best matched patch, and thus more robust.
Second, we introduce a mixture of linear similarity func-
tions that is able to discover different soft-patch-matching
patterns. Last, we introduce a negative semi-definite regu-
larization over a subset of the weights in the similarity func-
tion, which is motivated by the connection between explicit
polynomial kernel feature map and the Mahalanobis dis-
tance, as well as the sparsity constraint over the parameters
to avoid over-fitting. Experimental results over three public
benchmarks demonstrate the superiority of our approach. 1

1. Introduction
Person re-identification refers to a task of associating the

person through different camera views located at different
physical sites. In the real case that the camera views are
significantly disjoint making the temporal transition time
between cameras vary greatly, the temporal information is
not enough to approach the problem. Thus a lot of effort-
s [2, 5, 14, 37] have been devoted to investigating the solu-
tions through appearance information.

Existing works tackle this problem from two paths. The
first one is to design a visual descriptor to handle inter-
camera differences in lighting conditions, changes in ob-
ject orientation and object pose. The second path is to

1This work was done when Dapeng Chen was an intern at Microsoft
Research.

learn a similarity function to suppress inter-camera varia-
tions, which our work belongs to.

In this paper, we learn a similarity function over a pair-
wise feature formed by concatenating the patch descriptors
of a probe image and a gallery image, with the goal maxi-
mizing the difference between the similarity score between
an image A and an image B about the same person and that
between the image A and any image C about a differen-
t person. We follow the learning-to-rank methodology and
adopt the triplet loss function.

Our key contributions to the person re-identification
problem lie in three aspects. First, we explore the second-
polynomial kernel but adopt an explicit feature map instead
of the kernel value, to formulate a linear similarity function.
The benefit is the ability of characterizing the similarities of
all pairs of patches between two images, called soft-patch-
matching instead of only keeping the best matched patch in
one image for each patch in the other image as done in patch
matching [38, 37].

Second, we introduce a latent similarity function, a mix-
ture of linear similarity functions, which is capable of min-
ing various soft-patch-matching patterns. Last, we intro-
duce two regularizers: a subset of the weights in the sim-
ilarity function forms a negative semi-definite matrix, mo-
tivated by the connection between the explicit polynomial
kernel feature map and the Mahalanobis distance, and a s-
parsity constraint for the weights, which makes each com-
ponent in the mixture of similarity functions aligned with a
common function to avoid over-fitting.

2. Related Works

The pipeline of a person re-identification system often
consists of two main steps: (1) extracting features from im-
ages; (2) measuring the similarity between images. Some
works emphasized on feature design [34, 9, 2, 24, 5], and
some other works focused on similarity function learn-
ing [12, 31, 14, 28, 17, 20, 29, 28, 21, 26, 3, 40].

In the feature extraction step, methods that focus on fea-
ture design often try to tackle the person re-identification
problem by seeking a very stable and distinctive feature
representation. For example, Ma et al. [24] present the
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person image via covariance descriptors that is robust to il-
lumination change and background variation, while Zhao et
al. [38] learn the distinct salience feature to distinguish the
correct matched person from others. Farenzena et al. [9]
further consider symmetric and asymmetric prior of human
body, to integrate different local feature from different body
parts. Cheng et al. [5] employ pre-learned pictorial struc-
ture model to more accurately localize the body parts.

In contrast, methods that focus on similarity learning
usually extract the features in a more straightforward way:
most of them extract color or textural histograms from pre-
defined image regions in a “block” shape or “strip” shape
[36, 14, 17, 29, 20, 41]; some methods further encode the re-
gion descriptors to form high level images features [25, 21].
Our method is compatible with both region based features
or encoded features.

In the similarity measuring step, feature design based
methods usually employ off-the-shelf distance metrics, such
as Euclidean distance [9], Bhattacharyya distance [5], and
covariance distance [24, 1], etc. Meanwhile, how to learn
a proper similarity measurement is studied in different per-
spectives. Gray et al.[12] employ boosting to a select a sub-
set of optimal features for matching. Prosser et al.[31] and
Zheng et al.[41] stress the importance of loss function and
describe the triplet relation between samples. They don’t
compare the direct similarity score between correct matched
and incorrect matched pairs, but are only interested in the
rank of these scores that reflects how likely they match to a
given query image.

Recently, Mahalanobis distance learning has been ap-
plied for re-identification problem [28, 17, 14, 6], where
the distance metrics are optimized in either a discriminative
fashion [28, 6] or a generative fashion [17]. As Mahalanobis
distance can implicitly model the transition in feature space
between two camera views, these methods achieve better
performance than the similarity functions directly learnt in
the original feature space. Li et al. [21] further extend the
metric learning. They proposed the Locally-Adaptive De-
cision Function (LADF) to jointly models a distance metric
and a locally adaptive thresholding rule.

In this paper, we focus on the second step and develop a
new similarity function. The effectiveness of our similarity
function stems from the feature representation, the explicit
polynomial kernel feature map of concatenated descriptors
of image pairs. The purpose of utilization explicit feature
map is distinguished from existing explicit kernel work [33,
27]. They derive explicit feature maps to speed up nonlinear
kernel machines, while we utilize the explicit polynomial
kernel feature map to characterize the image pairs.

With obtained feature, our method can be compared with
methods based on patch matching [37, 38]. For each patch,
these methods greedily search the corresponding patch in
adjacent space and only keep the maximum matching score

as the similarity. Meanwhile, our features for image pair
maintain the matches of all the possible patch pairs, and the
matching criterion is to be learnt from data.

Our method is also related to the methods that learn mul-
tiple similarity functions. For example, Li et al. [20] learn
a mixture of experts, where samples were softly distribut-
ed into different experts (similarity function) via a gating
function. Ma et al. [26] divide the data according to the
additional camera position information, and utilize multiple
task learning to learn specific distance metric for each cam-
era pair. We learn multiple similarity functions in a latent
fashion to discover different matching patterns. The strate-
gy is inspired by latent SVM, which is originally developed
for object detection, to learn a mixture of object templates.
We modify it for similarity measuring, in order to increase
the model’s discriminative ability.

3. Formulation
In this section, we first introduce the similarity function

f(x1,x2) for image descriptors x1 and x2, then discuss the
necessary regularization strategies associated with the sim-
ilarity function, and finally formulate the objective function
for person re-identification. The flowchart of our method is
illustrated in Figure 1.

3.1. Similarity Function

We formulate our similarity function by perform-
ing an explicit kernel feature map on the concatenated
vector z = [x⊤

1 x⊤
2 ]

⊤. The feature map is written as
ϕ(z) = ϕ(x1,x2). It is known that there is an ex-
plicit feature map for second-order polynomial kernel
k(z1, z2) = (z⊤1 z2)

2, that is ϕ(z) = vec(zz⊤) =
[vec(x1x

⊤
1 )

⊤ vec(x2x
⊤
1 )

⊤ vec(x1x
⊤
2 )

⊤ vec(x2x
⊤
2 )

⊤]⊤.
Here vec(A) is an operation that vectorizes the matrix
A ∈ Rm×n to be a vector a ∈ Rmn×1. To make the
function be symmetric, i.e. f(x1,x2) = f(x2,x1), which
is natural for the similarity function, we redefine

ϕ(x1,x2) = [vec(x1x
⊤
1 +x2x

⊤
2 )

⊤ vec(x2x
⊤
1 +x1x

⊤
2 )

⊤]⊤. (1)

This feature map takes into account the relations between
the feature values from the same positions and different po-
sitions: x1dx2d and x1dx2d′ , where x1d is the dth compo-
nent of x1, x2d and x2d′ are similarly defined. In the sit-
uation when the feature x is a patch-wise descriptor of an
image (each entry or subvector corresponds to a block of
the image), vec(x1x

⊤
2 ) (and vec(x2x

⊤
1 )) can be viewed as

a concatenation of cross-patch similarities of two images,
where the cross-patch similarity is a vector formed by vec-
torizing the outer-product of the patch features.

In other words, it matches each patch in one image with
all the patches in the other image and all the matching s-
cores are attained as the descriptor, which we call soft-
patch-matching, instead of only keeping the best-matched
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Figure 1: Flow chart of the proposed method. We extract the features to represent the images, utilize the explicit polynomial-kernel feature map to
represent image pairs, and train a mixture of similarity functions to discover multiple matching patterns.

score. This still holds even when the descriptor x is trans-
formed through linear dimension reduction, because we
have vec((P⊤x1)(P

⊤x2)
⊤) = vec(P⊤(x1x

⊤
2 )P), which

is equivalent to first performing x1x
⊤
2 then left multiplying

P⊤ and right multiplying P.
The similarity function, f(x1,x2), is usually linear with

respect to the mapped feature ϕ(x1,x2). To handle differ-
ent soft-patch-matching patterns, we make a nonlinear ex-
tension using a latent formulation,

f(x1,x2) = max
h=1,...H

fh(x1,x2), (2)

where fh(x1,x2) = w⊤
h ϕ(x1,x2). Intuitively, the laten-

t formulation aims to discover H representative patterns
{wh}Hh=1, and uses the most similar pattern to evaluate the
similarity for a pair (x1,x2) in terms of the inner product.

3.2. Regularization

We propose two regularization over wh for each laten-
t linear function. The first regularization is motivated by
the connection between explicit polynomial kernel feature
map and the Mahalanobis distance as (x1−x2)

⊤M(x1−
x2) = vec(M)⊤ vec(x1x

⊤
1 +x2x

⊤
2 −x1x

⊤
2 −x2x

⊤
1 ). We

rearrange ϕ(x1,x2) = [ϕ1(x1,x2), ϕ
2(x1,x2)], where

ϕ1(x1,x2) = vec(x1x
⊤
1 + x2x

⊤
2 − x1x

⊤
2 − x2x

⊤
1 ) and

ϕ2(x1,x2) = vec(x1x
⊤
2 +x2x

⊤
1 ). Accordingly, wh is writ-

ten as [w1
h, w

2
h], and the linear function fh(x1,x2) is :

fh(x1,x2) = (w1
h)

⊤ϕ1(x1,x2)+(w2
h)

⊤ϕ2(x1,x2). (3)

The first half component (w1
h)

⊤ϕ1(x1,x2) is related
to Mahalanobis distance, as it is equivalent to (x1 −
x2)

⊤ mat(w1
h)(x1 − x2). Here, mat(a) is the inverse op-

eration of vec(A) that recovers the matrix A ∈ Rm×n from
a ∈ Rmn×1. We impose the negative semi-definite regular-
ization over w1

h: mat(w1
h) ≼ 0, as we utilize the negative

Mahalanobis distance to measure the similarity.
The second regularization is motivated by the assump-

tion that different matching patterns share a common com-
ponent, which describes a general matching pattern for al-
l the image pairs. We decompose wh = uh + u0, and
align the weights of theH similarity functions to a common

weight vector u0. The alignment is imposed by a sparsity
regularization:

∑H
h=1 ∥uh∥1. In addition, we also impose

the sparsity regularization ∥u0∥1, which is widely used for
feature selection.

3.3. Objective function

The training data for person re-identification can be
transformed as follows. Given a set of probe images X =
{x1, · · · ,xN}, each image xn is associated with two sets
of gallery images: a positive set X+

n composed of the im-
ages about the same person with xn and a negative set X−

n

composed of the images about different persons. As the
re-identification problem is usually formulated as a ranking
problem, we utilize the triplet loss function:

ℓtriplet(xi,xj ,xk) = [f(xi,xk)− f(xi,xj) + 1]+, (4)

where xj ∈ X+
i and xk ∈ X−

i . Intuitively, this means
that given a probe image xi, a gallery image belonging to
a same person xj ∈ X+

i should be scored higher than a
image belonging to a different person xk ∈ X−

i at least by
a margin 1. The whole loss is:

L(f) =
N∑
i=1

∑
xj∈X+

i ,xk∈X−
i

ℓtriplet(xi,xj ,xk). (5)

With the regularization, the objective function for person
re-identification is given as:

min
u0,...,uH

L(u0, . . . ,uH) + λ
∑H

h=0 ∥uh∥1 (6)

s. t. M(uh) ≼ 0, h = 0, 1, . . . , H. (7)

where M(uh) = mat(u1
h). u1

h is the first half part of uh.
As wh = [w1

h,w
2
h] = [u1

h+u1
0,u

2
h+u2

0], constraint 7 also
derives mat(w1

h) ≼ 0.

4. Optimization
We concatenate the (H +1) weight vectors {u}Hh=0 into

a single vector v = [u⊤
0 u⊤

1 · · ·u⊤
H ]⊤. Accordingly, we

reformulate the similarity function as,

f(x1,x2;v) = max
h=1,2,··· ,H

f(x1,x2, h;v) (8)



where f(x1,x2, h;v) is defined as:

f(x1,x2, h;v) = v⊤ψ(x1,x2, h). (9)

ψ(x1,x2, h) is a vector with the same length to v and its en-
tries are zeros except that the two subvectors corresponding
to u0 and uh are both equal to ϕ(x1,x2):

ψ(x1,x2, h)

=[ψ0(x1,x2, h)
⊤ψ1(x1,x2, h)

⊤ · · ·ψH(x1,x2, h)
⊤]⊤,

(10)

where ψ0(x1,x2, h) = ψh(x1,x2, h) = ϕ(x1,x2) and
ψk(x1,x2, h) = 0, ∀k ̸= 0, h.

Considering the formulation 6 and 7, we have the fol-
lowing observations: the negative semi-definite regulariza-
tion in the constraint 7 defines a closed convex set; the s-
parse term (∥v∥1) in the objective 6 is convex; but the loss
term L(v) in 6 is not guaranteed to be convex. The un-
certainty is from the content f(xi,xk)−f(xi,xj) within
ℓtriplet(xi,xj ,xk) , where f(xi,xj) is nonlinear.

For optimization, we first introduce an auxiliary function
for ℓtriplet(xi,xj ,xk) (Equation 4), that is:

ℓ′triplet(xi,xj ,xk, hij) = [f(xi,xk)−f(xi,xj , hij)+1]+,

where hij is a specified latent value for positive pair xi,xj .
ℓ′triplet(xi,xj ,xk, hij) is convex with respect to v. At the
same time, ℓtriplet(xi,xj ,xk) 6 ℓ′triplet(xi,xj ,xk, hij) is
inferred from Equation 8. Based on ℓ′triplet(xi,xj ,xk, hij),
we further introduce an auxiliary function for L(v), that is;

L′(v) =

N∑
i=1

∑
xj∈X+

i ,xk∈X−
i

ℓ′triplet(xi,xj ,xk, h
(t+1)
ij ). (11)

Accordingly, L′(v) is a convex function and bounds L(v).
This justifies optimizing objective function 6 by employing
L′(v). In practice, an EM-like iterative optimization algo-
rithm is applied to alternatively optimizing {hij} for posi-
tive pairs {(xi,xj)}j∈X+

i
and v from the convex optimiza-

tion with L′(v). Both steps decrease the objective function
and can achieve the convergence. The whole algorithm is
summarized in Algorithm 1.

4.1. Latent positive variable estimation

Let vt be the estimated weight vector at the iteration
t. The (t + 1) iteration first estimates the hidden variables
{hij} for positive pairs {(xi,xj)}j∈X+

i
:

h
(t+1)
ij = arg max

h=1,··· ,H
f(xi,xj , h;v

t). (12)

4.2. Weight vector update

The loss function L′(v) is convex with respect to v.
Thus, the optimization problem is convex, and the objec-
tive function can be written as

min
v
g1(v) + g2(v) + g3(v). (13)

The three terms are written as below. The loss term is
g1(v) = L′(v). The sparsity term is g2(v) = λ∥v∥1. The
semi-definite constraint term is written as g3(v) =∞δ[v /∈
C], where C is a closed convex set defined from the con-
straint 7: C = {v|M(uh) ≼ 0, h = 0, 1, . . . , H}.

We propose to adopt the alternating direction method of
multipliers (ADMM) and optimize an equivalent problem

min
v1,v2,v3

g1(v1) + g2(v2) + g3(v3)

s. t. v1 = v2 = v3.
(14)

Through introducing Lagrange multipliers µ1 and µ2, we
obtain the augmented Lagrangian,

Φ(v1,v2,v3,µ1,µ2) = g1(v1) + g2(v2) + g3(v3)

+ ρµ⊤
1 (v1 − v3) +

ρ

2
∥v1 − v3∥22

+ ρµ⊤
2 (v2 − v3) +

ρ

2
∥v2 − v3∥22

(15)

where ρ > 0 is a scaling parameter. The ADMM algorithm
in the scaled form consists of the iterations,

vk+1
1 =argmin

v1

g1(v1)+
ρ

2
∥v1−(vk

3−µk
1)∥22 (16)

vk+1
2 =argmin

v2

g2(v2)+
ρ

2
∥v2−(vk

3−µk
2)∥22

vk+1
3 =argmin

v3

g3(v3)+
ρ

2
∥v3−

1

2
(vk+1

1 +vk+1
2 +µk

1+µk
2)∥22

µk+1
1 =µk

1+vk+1
1 −vk+1

3

µk+1
2 =µk

2+vk+1
2 −vk+1

3

The updates of v1, v2 and v3 are represented below.

Update v1. We use the subgradient method to optimize
the problem 16. Let hik = maxh=1,··· ,H f(xi,xk, h;v1)
for all the negative pairs {(xi,xk)}k∈X−

i
. Then the

triplet loss ℓ′triplet(xi,xj ,xk, h
(t+1)
ij )=[v1ψ(xi,xk, hik)−

v1ψ(xi,xj , h
(t+1)
ij ) + 1]+. A subgradient of the prob-

lem 16 consists of two parts, written as ∇ = ∇1 +
∇2, where ∇1 =

∑N
i=1

∑
xj∈X+

i ,xk∈X−
i
(ψ(xi,xk, hik)−

ψ(xi,xj , h
(t+1)
ij )δ[v1ψ(xi,xk, hik)−v1ψ(xi,xj , h

(t+1)
ij )+

1 > 0] and ∇2 = ρ(v1−vk
3+µk

1). The resulting algorithm
is an iterative algorithm, alternatively updating hik for the
negative pairs and updating v1 by v1 ← v1 − α∇ with α
being the learning rate. The result at the convergence of the
iterative algorithm is output as vk+1

1 .
Update v2. We adopt soft-thresholding to update v2. The
following presents the update of the jth element v2,j of v2

vk+1
2,j =


vk3,j − µk

2,j − λ
ρ
, if vk3,j − µk

2,j > λ
ρ

0, if |vk3,j − µk
2,j | < λ

ρ

vk3,j − µk
2,j +

λ
ρ
, if vk3,j − µk

2,j 6 −λ
ρ

(17)

where v3,j , µ2,j are the jth element of v3 and µ2 respec-
tively.



Algorithm 1 The main algorithm.

1: Input: Dateset D = {xi,X+
i ,X

−
i }ni=1,

Initialize h1ij for each positive pairs,
2: Output: weight v
3: for t = 1, 2, ..., T do
4: Randomly initialize v0

3

5: for k = 0, ...,K−1 (until convergence) do
6: Update vk+1

1 by solving Equation 16
7: Update vk+1

2 by soft thresholding in Equation 17
8: Update vk+1

3 by projection in Equation 18
9: end for

10: vt ← vK
3

11: Infer h(t+1)
ij for positive pairs based on Equation 12

12: end for
13: v← vT

Update v3. v3 is updated through a simple projection:

vk+1
3 = ΠC [

1

2
(vk+1

1 + vk+1
2 + µk

1 + µk
2)]. (18)

The projection is obtained by first computing v̄k+1
3 =

1
2 (v

k+1
1 + vk+1

2 + µk
1 + µk

2), then updating a part of en-
tries in v̄k+1

3 that corresponding to the first subvector u1
h of

each weight vector uh (recall that v = [u⊤
0 u⊤

1 · · ·u⊤
H ]⊤)

through cropping the positive eigenvalues of M(u1
h), and

finally obtaining vk+1
3 .

5. Discussions
Similarity function. The relative distance comparison ap-
proach (PRDC) [41], which learns the Mahalanobis dis-
tance to align the relative similarities, and the locally-
adaptive decision function (LADF) approach [21], which
learns a second-order symmetric function, are close to the
proposed linear similarity function and can be cast into the
explicit polynomial kernel feature map. The joint Bayesian
approach to face recognition [4], similar to [21], also uses a
second-order symmetric function, but is learnt in a genera-
tive manner.

Our approach is different from them in several aspects,
including the triplet loss function, the mixture formulation
for nonlinear extension, as well as the sparsity regulariza-
tion. Table 1 compares the performance of the three meth-
ods and ours on the VIPER dataset with 316 gallery images.
In particular, Joint-Bayesian is implemented by ourselves
following details in [4] and utilize the same feature descrip-
tors with LADF and our method.
Latent formulation and regularization. The latent for-
mulation has also been investigated in other application-
s, such as object detection [10]. Our approach is the first
to study it in the person re-identification problem. Differ-
ently, our approach aligns each latent similarity function

Table 1: Comparing our method and related similarity functions on the
VIPER dataset, the size of the gallery set is 316.

methods r=1 r=5 r=10 r= 20 r=50
PRDC[41] 15.7 38.4 53.9 70.1 - -

Joint-Bayesian[4] 27.1 60.4 74.8 87.2 97.3
LADF[21] 30.0 64.7 79.0 91.3 97.2

Ours 36.8 70.4 83.7 91.7 97.8

to a common function, and adopts the sparsity regulariza-
tion to avoid over-fitting. It should be noted that the la-
tent formulation has also been studied in machine learning,
such as multi-class latent locally linear support vector ma-
chines [11]. The regularization scheme resembles clustered
SVM [13] that uses a similar alignment scheme but a L2

regularizer, regularized multi-task learning [8], and so on.

6. Experiments
In this section, we evaluate the proposed similarity

learning approach for the person re-identification task on
three widely-used datasets: VIPER [12], GRID [23] and
CAVIAR4REID [2], as well as for the face verification task
on the LFW dataset [15] using the binary loss function.

6.1. Setup

Visual descriptors and preprocessing. We follow [21] to
use the high level feature based on patch color descriptors
for the VIPER dataset, and the block feature similar to [29]
for the GRID and CAVIR4REID datasets. We observe that
the high-level descriptor is better on the viper dataset (with
about a 2% improvement in terms of the rank-1 matching
rate), and the block feature is more suitable for the GRID
and CAVIR4REID datasets. We employ principal compo-
nent analysis (PCA) to reduce the dimension. To limit the
impact of co-occurrence [16], we do a whitening process by
dividing each dimension by the inverse of the square root of
the corresponding eigenvalue. The resulting feature vectors
are normalized so that its L2 norm is 1.
Parameter setting. The coefficient λ of the L1 sparsity
regularization in Equation 6 and the penalty variable ρ in E-
quation 15 are determined via cross validation. To achieve
better performance, we empirically set the PCA-reduced di-
mension and the number of latent functions for the VIPER
GRID and CAVIR4REID datasets to be {100, 45, 80} and
{6, 3, 2}, respectively. The number of outer iterations is 5,
the maximum iteration number for the ADMM algorithm is
15, and the iteration number for updating v1 is set as 10. We
initialize the latent variable hij for positive pairs (xi,xj)
by clustering the positive samples using the spherical k-
means algorithm [7] which utilizes dot product to measure
the inter-sample similarities.
Evaluation scheme. We adopt a single-shot evaluation.
The persons in each dataset are separated into the training
set and testing set so that each person appears only in the
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Figure 2: Empirical analysis: The average CMC curves for analyzing the effect of (a) regularization. (b) explicit polynomial-kernel feature map. (c) latent
formulation. (d) the loss function. All the experiments are run 10 times with the same partitions. The size of the gallery set is 316.

Methods Regularization Feature H Loss function r=1 r=5 r=10 r=20 r=25 r= 50
NSS None ϕ(x1,x2) 6 triplet 24.8 56.8 72.9 87.0 90.3 96.0
SP Sparse(SP) ϕ(x1,x2) 6 triplet 26.1 60.7 76.7 89.5 92.1 97.4
SD Semi-definite(SD) ϕ(x1,x2) 6 triplet 34.4 69.5 82.7 91.4 93.3 97.4
F1 SP+SD ϕ1(x1,x2) 6 triplet 28.8 50.8 74.8 86.9 89.2 95.6
F2 SP+SD ϕ2(x1,x2) 6 triplet 28.9 63.0 77.7 89.2 91.3 96.4
F3 SP+SD ϕ3(x1,x2) 6 triplet 13.4 26.7 36.6 49.9 54.2 69.9

Single SP+SD ϕ(x1,x2) 0 triplet 33.9 68.6 81.2 91.7 93.5 97.6
Binary SP+SD ϕ(x1,x2) 6 binary 33.0 67.5 80.6 89.5 92.2 96.6
Ours SP+SD ϕ(x1,x2) 6 triplet 36.8 70.4 83.7 91.7 93.9 97.8

Table 2: Performance of different configuration: The top-n matching rate of the methods with different configurations about regularization strategy,
explicit polynomial kernel feature map, the number of similarity funcion H and the loss function. All the experiments are run 10 times with the same
partitions. The size of the gallery set is 316.
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Figure 3: The rank-1 matching rate with respect to (a) parameter λ when
ρ is fixed to be 30. (b) parameter ρ when λ is fixed to be 0.1.

training set or the testing set. We partition the testing set in-
to two sets: the probe set and the gallery set. The gallery set
contains one image, and the probe set contains one image
(VIPER, GRID) or multiple images (CAVIR4REID). The
results are evaluated by cumulative matching characteristic
(CMC) curves [12], an estimate of the expectation of find-
ing the correct match in the top n matches. The final results
are averaged over ten random runs.

6.2. Empirical analysis

We empirically analyze how various components in our
approach affect the performance. We use the results ob-
tained from the VIPER dataset to show the analysis result.
The effect of regularization. There are two regularization
schemes in the proposed approach, sparsity and negative
semi-definite. We report four kinds of results with respect
to regularization: without regularization (NSS), only with s-
parsity regularization (SP), with negative semi-definite reg-
ularization and the L2 regularization replacing the sparsity
regularization (SD), and with both regularization(SP+SD).
The CMC curves and quantitative results are reported in
Figure 2(a) and Table 2. It can be observed that the semi-
definite projection takes a major contribution that improves
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Figure 4: The influence of the number of multiple-function H on (a) rank-
1 matching rate. (b) rank-10 matching rate.

the rank-1 matching rate from 24.8% to 34.4%, while spar-
sity is also indispensable that further improves the result of
L2 regularization from 34.4% to 36.8%. Both sparsity and
semi-definite regularization consistently improve the NSS
in all range. The gain from regularization has also been
emphasized in [36], where they impose the L2 norm of the
coefficients to improve PCCA[28], while we show that s-
parsity regularization is more effective for our method.
The effect of explicit polynomial-kernel feature map. To
show the effectiveness of the proposed polynomial-kernel
feature map ϕ(x1,x2), we construct three variants of our
methods F1, F2 and F3, which are obtained by replacing
ϕ(x1,x2) with ϕ1(x1,x2), ϕ

2(x1,x2) and ϕ3(x1,x2). A-
mong them, ϕ1(x1,x2) and ϕ2(x1,x2) are two parts of pro-
posed polynomial feature after regularization, ϕ3(x1,x2) =
|x1 − x2| measures the first order absolute difference. De-
noting our method as F1+F2, we compare F1+F2 with F1,
F2 and F3 in the Figure 2(b). From the Figure, we can see
F1, F2 and F1+F2 significantly outperform F3, which indi-
cates the second order correlation used here can represen-
t much more useful information for similarity measuring.
Furthermore, we find that F1 and F2 perform almost the
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Figure 5: Comparison with other methods: CMC curves of our method and other competing methods on (a) the VIPER dataset with 316 gallery images.
(b) the VIPER dataset with 532 gallery images. (c) the GIRD dataset with 900 gallery images. (d) the CAVIER4REID dataset with 36 gallery images.

Table 3: The rank-n matching rates(%) for comparison with other methods
on the VIPER dataset. The size of the gallery set is 316.

Methods r = 1 r = 5 r = 10 r = 20 r = 50
PCCA [28] 19.3 48.9 64.9 80.3 - -
LF [29] 24.2 52.0 67.1 82.0 94.1
RPLM [14] 27.3 55.3 69.0 82.7 95.1
LMF [39] 29.1 52.3 66.0 79.9 - -
LADF [21] 30.0 64.7 79.0 91.3 97.2
kLFDA [36] 32.3 65.8 79.7 90.9 - -
Ours 36.8 70.4 83.7 91.7 97.8

Table 4: The rank-n matching rates(%) for comparison with other methods
on the VIPER dataset. The size of the gallery set is 532.

Methods r = 1 r = 5 r = 10 r = 20
PCCA [28] 9.3 24.9 37.4 52.9
RPML [14] 10.9 26.7 37.7 51.6
LAFT [20] 12.9 30.3 42.7 58.0
Ours 17.4 41.6 55.3 70.8

same at rank 1, but their collaboration can improve the re-
sults from about 29% to 36.8%, which indicates the com-
plementary properties of the two parts.
The effect of the latent formulation. Latent formulation
introduces H similarity functions to account for differen-
t matching patterns and learns one similarity function to
prevent over-fitting. To evaluate how much our method
can benefit from learning multiple functions, we reduce our
method to learn a single matching function by only learn-
ing the common weight u0 with H = 0, denoted as “Sin-
gle”. The comparison between Single and original one are
demonstrated in Figure 2(c). The latent formulation can im-
prove the rank-1 matching rate from 33.8% to 36.7%. Be-
sides, we show how the number of similarity function can
influence the performance in Figure 4.
The effect of the loss function. To investigate influence of
choosing different loss functions, we compare our method
with triplet loss and with binary loss. The binary loss is the
counterpart of the triplet loss in Equation 4:

ℓbinary(xi,xj) = [1− (f(xi,xj) + b)yij ]+, (19)

where yij equals 1 or −1 indicating whether xi and xj be-
long to a same identity, and b is the threshold value. For bi-
nary loss, as the number of negative samples is much larger
than that of the positive samples, we adopt the hard nega-
tive sample mining strategy [10]. The overall performance
of triplet loss is better than binary loss as shown in Figure

Table 5: The rank-n matching rates(%) for comparison with other methods
on the GRID dataset. The size of the gallery set is 900.

Methods r = 1 r = 5 r = 10 r = 15 r = 20
PRDC [41] 9.7 22.0 33.0 40.0 44.3
RankSVM [31] 10.2 24.6 33.3 39.4 43.7
MRank-PRDC[23] 11.1 26.1 35.8 41.8 46.6
MRank-rankSVM[23] 12.2 27.8 36.3 42.2 46.6
RQDA [22] 15.2 30.1 39.2 44.7 49.3
Ours 16.3 35.8 46.0 52.8 57.6

Table 6: The rank-n matching rates(%) for comparison with other methods
on the CAVIAR4REID dataset. The size of the gallery set is 36.

Methods r = 1 r = 5 r = 10 r = 20
LF [29] 35.2 59.9 73.7 88.8
PCCA-χ2

rbf [36] 33.2 65.9 81.9 95.2
LADF [21] 30.3 62.8 78.0 92.6
MFA-χ2 [36] 40.2 70.2 83.9 95.1
Ours 40.1 65.6 78.0 90.5

2(d). The difference between triplet loss and binary loss is
that triplet loss utilizes the identity information to optimize
the relative similarity according to the query images, while
binary loss tries to differentiate all the correct matches from
incorrect matches.
The effect of hyper-parameters. We study the influence
of two parameters, the parameter λ of the L1 sparsity reg-
ularization in Equation 6 and the penalty parameter ρ in E-
quation 15. We show how the performance changes with
respect to λ in Figure 4 (a) by fixing ρ = 30, and show the
influence of ρ in Figure 4 (b) by fixing λ = 0.1. It can be
seen that both too large λ and too small λ lead to inferior
performances, and the influence of ρ is a little complex. We
use cross validation to select the two parameters.

6.3. Results

VIPER. The VIPER dataset contains 632 persons. For each
person there are two 48 × 128 images taken from camer-
a A and B under different viewpoints, poses and illumina-
tion conditions. Two protocols were used for the evaluation:
randomly selecting 316 persons to form the training set and
the remaining 316 persons to form the testing set; and ran-
domly selecting 100 persons to form the training set and the
remaining 532 persons to form the testing set. We evaluate
the performance using both protocols, and present the re-
sults in Table 3 and Table 4. Besides, we also plot the CMC
curves in Figure 5. It can be seen that our method signif-



icantly outperforms other state-of-arts under both the two
protocols.
GRID. The GRID dataset consists of person images cap-
tured from 8 disjoint camera views installed in a busy under-
ground station. The probe set contains 250 persons, and the
gallery set contains 1025 persons where 775 persons do not
match any person in the probe set. We process the images
by resizing the images into 300× 100. We divide each im-
age evenly into 150 overlapped patches, and describe each
patch using the concatenation of HSV and LAB histogram-
s (24 bin for each channel), a LBP descriptor with 8 bins,
and a SIFT feature with 8 bins. All the patch features are
concatenated together to form the image feature, which is
further reduced to a 45-dimensional feature through PCA.

We conduct the experiments directly over the 10 parti-
tions provided by the GRID dataset, where 125 image pairs
are used for training, 125 image pairs and 775 irrelevant im-
ages are used for testing. Figure 5 (c) and Table 5 show the
CMC curves and matching rates for our method and recent
published results under the same protocol. One can see that
our method consistently achieves the best results and that
the superiority becomes significant with the larger rank.
CAVIAR4REID. The images in the CAVIAR4REID
dataset are cropped from 26 sequences captured by two
cameras in a shopping center. It contains 72 persons in to-
tal, and for each person there are 10 or 20 images collected
from one or two video sequence. We resize the images into
90× 30, and divide each image into 45 overlapped patches.
Each patch is described by the feature same to the one used
for the GRID dataset. All the patch features are concate-
nated together to form the image feature, which is further
reduced to a 80-dimensional feature.

We use the same experimental protocol with [36, 21],
where 36 persons are used for training and other 36 person-
s are used for testing. Our approach performs the second
best from Table 6. The reason might be that the number of
identities in the training set is very small. It is valuable to
integrate the kernel trick used in MFA [36], which performs
the best in this dataset, into our approach to further improve
the performance.

6.4. Results for face verification

Face verification is a binary classification problem to tell
whether two images belong to a same person. We use the
binary loss in Equation 19 to replace the triplet loss in Equa-
tion 4, and study the performance for face verification on the
LFW dataset [15]. We follow the image-restricted, no out-
side data protocol [15], in which the dataset is split into 10
folds with each containing 300 positive pairs and 300 neg-
ative pairs. The classifier is learnt from 9 folds and tested
over the remaining 1 fold. No external data for strong face
alignment, feature extraction or recognition model training
is allowed. We do the evaluation by 10-fold cross-validation
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Figure 6: Comparison with the state-of-the-arts: ROC curves of our
method and the state-of-the-art techniques on the LFW dataset, under re-
stricted, no outside data protocol. The accuracy is marked before the name
of each approach.

Table 7: Comparing our method and its variants on the LFW dataset. The
variants includes using different pairwise features and regularization strate-
gies as introduced in the text. The results are in terms of mean accuracy
and standard error.

Methods Accuracy Methods Accuracy
F1 87.95 ± 1.17 NSS 85.48 ± 1.34
F2 88.43 ± 1.39 SP 87.42 ± 1.65
F3 83.22 ± 0.98 SD 89.23 ± 1.13

Single 89.15 ± 1.17 Ours 90.07 ± 1.07

and report the performance in terms of mean accuracy and
standard error. We employ the 67584-dimensional fisher
vector introduced in [32] to represent the face image, and
reduce it to be a 150-dimensional vector via PCA.

We compare our approach with the competing meth-
ods, including the hybrid descriptor-based method [35],
V1-like/MLK [30], APEP (fusion) [18], the fisher vector
face [32] and Eigen-PEP [19]. As shown in Figure 6, our
method outperforms the current state-of-the-arts. Partic-
ularly, our approach gets the 2.6% improvement over the
fisher vector face [32] that uses the same feature.

In addition, we present the empirical analysis result to
compare our method with its variants which are similar to
the variants for the re-identification task in the Table 2. The
results given in Table 7, not only demonstrate the effective-
ness of the proposed similarity function from the compari-
son among F1, F2, F3, single and ours but also show the sig-
nificance of the regularization from the comparison among
NSS, SP, SD and ours.

7. Conclusion
We present a novel similarity learning approach to per-

son re-identification. The success of our approach stems
from the robust pairwise feature - explicit polynomial kernel
feature map, which leaves the data to determine the impor-
tance of the patch match degree instead of keeping the best
matched patch, a mixture of similarity functions, which is
able to discover different similarity patterns, as well as two
regularization terms that increase the generalization ability
of our approach.
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