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Abstract

In this work, we present a new framework for person
recognition in photo albums that exploits contextual cues
at multiple levels, spanning individual persons, individual
photos, and photo groups. Through experiments, we show
that the information available at each of these distinct con-
textual levels provides complementary cues as to person
identities. At the person level, we leverage clothing and
body appearance in addition to facial appearance, and to
compensate for instances where the faces are not visible. At
the photo level we leverage a learned prior on the joint dis-
tribution of identities on the same photo to guide the identity
assignments. Going beyond a single photo, we are able to
infer natural groupings of photos with shared context in an
unsupervised manner. By exploiting this shared contextual
information, we are able to reduce the identity search space
and exploit higher intra-personal appearance consistency
within photo groups. Our new framework enables efficient
use of these complementary multi-level contextual cues to
improve overall recognition rates on the photo album per-
son recognition task, as demonstrated through state-of-the-
art results on a challenging public dataset. Our results out-
perform competing methods by a significant margin, while
being computationally efficient and practical in a real world
application.

1. Introduction
After decades of research, the problem of face recogni-

tion as measured by standard benchmarks such as Labeled
Faces in the Wild (LFW) [11, 12] is to the point of being
nearly solved. For example, Schroff et al. [24] achieved
99.63% verification accuracy using a deep convolutional
neural network (CNN). That said, this impressive result is
misleading because such benchmarks are typically skewed
towards images with clearly visible, high quality faces (see
Figure 1). However, when applying face recognition for
tagging faces in the real-world photo albums, faces are of-
ten not so clearly visible and present many challenges due

Figure 1. Faces in the Labeled Faces in the Wild dataset: most
faces are clear with good image quality.

Figure 2. Faces in the People In Photo Albums dataset: the large
visual appearance variations are very challenging for face recog-
nition.

to changes in body pose, illumination, heavy occlusion and
so forth (see Figure 2). As an example, Zhang et al. [31] ob-
served a dramatic drop in recognition accuracy when a top
performing LFW algorithm was applied to a photo album
test set.

In addition to learning more discriminative and robust
face features, we must look beyond the faces in order to
approach human-level performance on thismore challeng-
ing task. In general, information beyond the faces can be
viewed as context to guide recognition. Such “extra-face”
context can naturally be divided into three levels: the person
or body level, the photo level, and the photo group level, as
depicted in Figure 3.

At the person level, perhaps the most obvious contex-
tual cue is clothing, which has been shown to be an ef-
fective supplemental cue for face recognition in photo al-
bums [1, 8, 25, 30]. However, it is still not well under-
stood how best to fuse face and body appearance features as
the relative importance of these features depends on higher
level context. In this paper, we explore several alternatives
for fusing person-level appearance features.

Contextual cues at the photo level include metadata
(when present) such as geographical and temporal infor-
mation [19], event labels, and social relationships [17, 26].
However, we cannot always rely on metadata to be present

1



(a) person-level context

B CA

(b) photo-level context

(c) group-level context

Figure 3. The three levels of context that can be exploited for per-
son recognition in photo albums: a) person-level context consists
of face and body appearance features; b) photo-level context in-
cludes identity co-occurrences and mutual exclusion; c) group-
level context presents higher intra-personal appearance consis-
tency and reduced identity search space.

and accurate. Therefore, we seek a robust method that can
take advantage of such metadata when available, but can
still exploit photo level context when the metadata is ab-
sent. Aside from the metadata, we have found that we can
leverage a rough prior on the co-occurrences of particular
individuals within a photo, as well as a soft mutual exclu-
sion constraint, to substantially improve recognition.

Going beyond a single photo, we observe that album
photos frequently occur in groups that are closely related,
such as being taken on the same day or same event or same
setting. When such groupings are present and can be au-
tomatically determined, then it becomes possible to exploit
mutual information across the photos in a group to improve
recognition. In particular, we can adapt the person appear-
ance classifiers to a given group. Metadata, when available,
can be used for effective groupings. However, in order to be
robust in the absence of metadata, we propose an unsuper-
vised method to determine the effective photo groups based
on photo appearance.

In summary, in order to go “beyond faces” for person
recognition in photo albums, it is necessary to exploit con-
textual information. This paper presents a framework that is
both effective and efficient, based on three levels of contex-
tual information, namely person, photo, and photo group.
Our contributions are as follows:

• a practical and efficient multi-level contextual model
achieving state-of-the-art results on the People In
Photo Albums (PIPA) person recognition benchmark;

• an iterative joint inference process to leverage the
photo-level context cues;

• an unsupervised, metadata-free method to discover rel-
evant photos that provide group-level context for im-
proved person recognition;

• an effective confidence-aware method for fusing the
person-level appearance cues.

2. Related Work
Researchers have been long interested in using context

cues in recognition [6, 7, 8, 14, 17, 22, 25]. Clothing fea-
tures [8], metadata [25], location and event labels [17] have
been used as contexts to improve face tagging. Geographic
contexts, spatial contexts, temporal contexts or even more
high-level cultural contexts have been used for image clas-
sification, object detection and classification [4, 9, 10, 29].

However, most of these context cues are from metadata
or require manual labels beyond the identity domain and
are inapplicable in the absence of these information. In this
paper, we propose a contextual model that does not rely on
metadata but can benefit from it when available.

The most relevant literature to ours are Zhang et al. [31]
and Oh et al. [21]. Zhang et al. [31] published the PIPA
dataset to study person recognition. Both works observed
that context cues beyond the faces help improve person
recognition accuracy. Zhang et al. [31] used discriminative
information from poselets [2]. Oh et al. [21] carefully eval-
uated the effectiveness of different body regions, the scene
context and some long term attributes (e.g., age and gender).

However, the context cues in their works are mostly at
the person-level. They do not exploit the joint identity as-
signment of multiple instances at the photo-level or the mu-
tual information across multiple photos at the group-level.
In our work, we have found that recognition accuracy im-
proves significantly when we incorporate context cues at
multiple levels.

Our work leverages Conditional Random Fields (CRF)
to jointly infer the identities of instances in the same photo
to exploit the identity co-occurrences. In this sense, the
methods from Stone et al. [26] and Brenner et al. [3] are
relevant to ours. However, the former relies on the social
context to estimate the relationships between people and
the latter jointly processes the entire set as a sparse Markov
Random Fields, which can be computationally expensive in
processing a large-scale photo collection.

To our knowledge, the framework presented here is the
first to effectively leverage context cues across multiple lev-
els for person recognition in photo albums. In addition to
person-level appearance features and photo-level identity
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Figure 4. The proposed multi-level contextual model.

co-occurrences, we leverage groups of relevant photos spe-
cific to each testing photo as its group-level context.

3. The Multi-Level Contextual Model
This work addresses the identification setting for person

recognition in a photo album. Specifically, we are given a
set of photos containing a set of person instances that have
been grouped into two disjoint sets: the gallery set where
identity labels are assigned to each instance, and the probe
set where the identity labels are unknown. Our task is to
predict the identities of all unlabeled instances in the probe
set. In this work, we assume that there is at least one labeled
instance for each identity in the gallery set.

3.1. Framework

As shown in Figure 4, the proposed framework processes
the face and body regions separately with the group specific
online learned SVMs and then fuses the outputs. The out-
puts are then iteratively updated with the photo level joint
inference CRF.

Multiple regions present complementary yet discrimina-
tive information in the person-level context. The proposed
method uses face and body regions and can be naturally ex-
panded to incorporate more regions. We discuss the options
to fuse the predictions with different regions in Section 3.2.

In related photos, people present more consistent appear-
ance. The proposed method discovers groups of related
photos to learn group specific SVMs online for prediction.
We describe the details in Section 3.3.

As shown in Figure 4, after leveraging the person-level
and group-level context, the results are updated with an it-
erative image level joint inference CRF. In this step, we first
estimate the identity co-occurrences based on the current
predictions of the unlabeled instances and the given labeled
instances. We then proceed to encode this prior knowledge
to jointly infer identities of all unlabeled instances for each
photo to update our predictions. After that, we update the
prior knowledge based on the current predictions and repeat
this process iteratively for several times. We describe this

part in Section 3.4.

3.2. Person-Level Context

Identity information exists in the appearance of clothes,
hairstyles and other regions. Oh et al. [21] carefully ex-
plored the effectiveness of different regions such as the
head, body, upper body and scene. In this work, for sim-
plicity, we only include the face and body regions shown
in Figure 3. We use a face recognition system (detailed in
the experiment section) to extract the face features from the
face regions. We fine-tune a CNN pre-trained for image
classification with the body regions to extract body features
using the soft-max classification objective over identities.
By fusing the information from different regions, person-
level context is incorporated.

The proposed method can be expanded to incorporate
more regions. Without loss of generality, we assume C re-
gions are used in the proposed framework. Assume there
are M people in the photo set. With the c-th region, we can
apply an identity classifier (will be detailed in Section 3.3)
to obtain the prediction sc(x) as an M -dimensional vector.
The y-th element in sc(x) indicates the probability that the
instance x is of identity label y. Given the instance x, we
proceed with C regions and obtain C prediction score vec-
tors: s1(x), . . . , sC(x). We fuse the scores from different
regions as our final prediction.

Specifically, we explore the following options to fuse the
C prediction vectors to obtain boosted recognition result.

3.2.1 Weighted Average Fusion

Zhang et al. [31] combined the predictions from the pose-
let classifiers with a linear Support Vector Machine (SVM),
which is equivalent of taking the element-wise weighted
sum of all prediction score vectors, i.e.,

s(x) =

C∑
c=1

ωcsc(x), (1)



in which ωc is the weight for the c-th region. The weights
can be learned with a binary linear SVM over the C-
dimensional score vectors from the validation dataset [31].

3.2.2 Max Pooling Fusion

Without learning the weights, another straightforward op-
tion to fuse the predictions is taking the element-wise max
operation, i.e.,

s(x) = max
c∈[1,C]

sc(x) (2)

3.2.3 Confidence-aware Fusion

Having fixed combination weights {ωc}Cc=1 may not be op-
timal. Another option for fusion is to assign instance spe-
cific weights based on the prediction confidence scores.

By sorting the elements in sc(x) in descending order:
[s1, s2, . . . , sM ]. , we define the weight ωc(x),

ωc(x) =
1

Z

(s1 − s2)

(s1 − sM )
, s(x) =

C∑
c=1

ωc(x)sc(x), (3)

where Z is the normalization term to ensure
∑C

c=1 ωc(x) =
1.

We evaluate all these options in the experiments (see
Section 4.4).

3.3. Group-Level Context

In the identification setting for person recognition,
the problem naturally fits into a multi-class classification
paradigm. With a specific region feature to represent the
instance, we can learn a classifier from all the gallery in-
stances. We name it the global multi-class classifier. In this
work, we use linear SVM as the classifier. Linear SVM is
efficient and it generalizes well to unseen data with limited
amount of training samples. For multi-class classification,
we follow the 1-versus-all paradigm to train the multi-class
SVM using the LIBLINEAR [5] implementation.

When people change clothes, hairstyles or when the pho-
tos are taken from different viewpoints, the appearance of
the same person can change dramatically. The large ap-
pearance variations lead to highly non-linear class bound-
ary in the feature space and hence affect the robustness of
the global classifier. However, we observe that when pho-
tos are properly grouped, the intra-personal variation is re-
duced, as shown in Figure 5, which allows us to leverage the
mutual information inside the group to help person recogni-
tion. However, this extra information is not always available
or is complete. Hence, we need a method to automatically
discover the photo groups.

We first define the relevancy between two photos using
the photo similarity and identity co-occurrence. The intu-
ition is that when two photos are visually similar or contain

Figure 5. The instances of the same person in four photo groups:
the intra-personal visual appearance variations become smaller
within each group.

the same persons, they are more likely to be related. Given
an instance x in a query photo, we determine a set of “neigh-
bor” photos most relevant to the query photo, and use them
to exploit the context cues at group-level.

We use the caffe [13] implementation of AlexNet [15]
to extract holistic image feature FI for photo I . Given two
photos Ii and Ij , we denote the labeled instances in the two
photos as {x1, x2, . . . , xNi} and {x′1, x′2, . . . , x′Nj

} respec-
tively. The identity label for any instance x is denoted as
Y (x). We define the affinity Λi,j between photos Ii and Ij
as

Λi,j = cos(FIi , FIj ) ∗ (1 +
Nij

Ni +Nj −Nij
)/2, (4)

where

Nij =
∑

1≤u≤Ni, 1≤v≤Nj

[Y (xu) = Y (x′v)],

cos(FIi , FIj ) =
FIi ·FIj

||FIi ||· ||FIj ||
,

where [P ] is the Iverson bracket, i.e., [P ] = 1 if P is true
otherwise [P ] = 0. When Ni = 0 or Nj = 0, we set
Λi,j = cos(FIi , FIj ).
Nij measures the identity co-occurrences between two

photos, while cos(FIi , FIj ) indicates the photo similarity.
The photo similarity part in Λi,j is more important since the
labeled instances are usually limited, which can lead to in-
accurate estimation of the identity co-occurrences. We still
choose to keep the identity co-occurrence part here because
it slightly improves the recognition accuracy (around 0.3%
on average) with an ignorable overhead.

We then use this affinity matrix for spectral embed-
ding [20]. In this way, we embed all photos into the space
in which the neighbors are of higher relevancy. Technically,
we calculate the normalized Laplacian matrix L from Λ,

L = D−
1
2 ΛD−

1
2 , Di,i =

∑
j

Λi,j . (5)



Then we find the K largest eigen-vectors of L, i.e.,
X1, . . . , XK . Assuming L is a N × N matrix, then each
Xk is a N dimensional vector. The K vectors are stacked
as rows in a K ×N matrix. We represent the n-th photo by
the n-th column in this matrix, which is a K dimensional
vector. After embedding, the euclidean distance between
two photos indicates their relevancy.

After the spectral embedding, given a probe instance in
photo I , we choose theNcontex nearest neighbors of I as its
group-level context. We then train an online, group-specific
SVM classifier with the labeled instances in its group-level
context for prediction. Note that when there is no labeled
instance in the photo group, we use the global SVM for
prediction. If there is only one identity in the photo group,
we assign the identity label to the probe instance as its group
specific output.

The group specific classifier may suffer from the insuf-
ficient training samples problem. For regularization, we
combine the prediction from the globally trained SVM with
the prediction from the group specific SVM. We observe
that taking average of the two predictions works well. Intu-
itively, the global SVM is adapted to the group in this way.

3.3.1 Album Information

In many personal photo management softwares, the pho-
tos are usually organized as albums. If this information is
available, given a photo, we simply use its photo album as
the group-level context. An SVM is trained for each album
as the group specific SVM.

3.4. Photo-Level Context

As shown in Figure 4, after fusing the recognition re-
sults from different regions, we further update the predic-
tions with the photo-level context. At the photo-level, we
jointly predict multiple instances in a single photo, in which
we can encode the following prior knowledges.

First, intuitively, two people have a higher chance to ap-
pear in the same photo when they know each other. We
can bias our predictions to assign co-occurred identities to
instances in the same photo. Second, in general, two in-
stances in the same photo are rarely the same person. We
can largely reduce the possibilities of assigning duplicated
labels in the same photo.

Given the current predictions, we incorporate these
knowledges to update the predictions with the Conditional
Random Fields (CRF). Technically, we define a label com-
patibility matrix ψ to encode the knowledge. Given two
identity labels la and lb, ψ(la, lb) indicates how likely the
two identities are in the same photo.

ψ(la, lb) =

 ε la = lb,
α la, lb co-occurred,
1 otherwise,

(6)

where α >= 1 is a parameter for the strength of the iden-
tity co-occurrence assumption; a small ε = 0.01 is used
to enforce a soft mutual exclusion constraint; la and lb are
regarded as co-occurred, when two instances of them have
been observed in the same photo.

We have explored other options for α. For example, in-
stead of having α as a constant value, we tried setting it
proportional to the number of times la, lb co-occurred in
the photo set. However, due to the limited number of sam-
ples, this statistic is not reliable. We observe that having a
constant α provides more stable improvement.

In the CRF, we look for an identity assignment Y =
[y1, . . . , yN ], yn ∈ [1,M ] over the N instances {xn}, n ∈
[1, N ] in the image I . Y is regarded as a random variable
conditioned on the image I . We jointly predict the identities
of the N instances to maximize the potential E(Y ),

E(Y ) =

N∑
n=1

φ(yn) +
∑
n,m

ψ(yn, ym). (7)

The unary potential φ(yn) is from the current prediction.
i.e., the M -dimensional score vector s(xn),

φ(yn) = yn-th element in s(xn). (8)

For any labeled instance of identity label l, we set φ(yn) =
[yn = l], where [P ] is the Iverson bracket.

The pairwise potentials are from the label compatibility
matrix ψ. The Loopy Belief Propagation [18] is applied for
the CRF inference with the UGM implementation [23].

Lastly, since the label compatibility matrix is estimated
from the current prediction, it may not be accurate enough.
We propose to update the label compatibility matrix each
time after we obtain the updated predictions from the joint
inference. The updated label compatibility matrix is more
accurate and helps the joint inference. This loop is iterated
for T times. Typically after T = 5 iterations, it converges.
We observe consistent improvement by having this iterative
joint inference process.

4. Experiments on the PIPA Dataset
The proposed method is evaluated on the PIPA dataset

and compared with the state-of-the-art methods. We no-
ticed some incorrect labels in the test set of PIPA. To accu-
rately evaluate the proposed method, we manually curated
the test set to remove label noise and merge redundant la-
bels. The curation does not make the problem easier. We
show some examples of this in the supplemental material.
For fairness, we use the original labels when compared with
existing methods.

4.1. Setting

The PIPA dataset is composed of the training set, valida-
tion set and test set. The training set is for model training



Table 1. Evaluation of different strategies for multiple regions fusion.
Splits Face Body Concatenated Features Weighted Average Max Pooling Confidence-aware

original 67.89% 74.89% 71.15% 84.38% 82.70% 83.86%
album 64.87% 64.90% 67.81% 78.18% 77.41% 78.23%
time 58.86% 51.84% 61.76% 69.60% 68.76% 70.29%
day 54.23% 23.28% 54.46% 52.18% 54.95% 56.40%

Table 2. Evaluation of different components in the proposed
framework with curated labels: a) baseline method: fusion of
global classifiers from face and body regions. b) baseline method
with photo-level context; c) baseline method with group-level con-
text; d) multi-level contextual model; e) multi-level contextual
model with album information.

stage original album time day
a) 83.86% 78.23% 70.29% 56.40%
b) 84.84% 79.13% 71.94% 57.37%
c) 85.10% 79.63% 72.02% 57.33%
d) 88.20% 83.02% 77.04% 59.77%
e) 94.27% 83.79% 80.64% 61.77%

and the test set is for evaluation. The test set has 7,868 pho-
tos in 357 albums. There are 12,886 labeled instances of
581 different individuals. The evaluation protocol on PIPA
follows the person identification setting. The test set is split
into the gallery set and probe set. Given the head bound-
ing boxes of all instances in the test set and the identity la-
bels for all instances in the gallery set, we train our person
recognition system to predict the missing identity labels in
the probe set. Then we switch the gallery set and probe set,
repeat the experiment and report the average accuracy.

In the original setup, a probe instance may have near
duplicate gallery instance. To study how well the per-
son recognition system can address long-term appearance
changes, Oh et al. [21] proposed three more challenging
and realistic splits. We incorporate their evaluation proto-
cols and report our results on all the four splits: original,
album, time and day.

Generally, the four splits are in the order of increasing
difficulty. In the album splits, the gallery and probe in-
stances are split across different albums. In the time splits,
instances are split into newest versus oldest based on the
photo-taken time. They manually setup the day splits to en-
force appearance changes. We refer the readers to Oh et
al. [21] for details about the construction of these splits.

4.2. Face Region

We implemented a deep CNN based face recognition
system following Sun et al. [27] for feature extraction from
face regions. The number of parameters in the CNNs in
the system is about one-fourth of the AlexNet [15]. On the
face recognition benchmark LFW, it achieves an accuracy

of 97.65% comparable to 97.35% from DeepFace [28].
On the PIPA dataset, with the given head bounding box,

we apply a face detector we implemented following Li et
al. [16] to detect the largest face inside the bounding box.
Then we extract the face feature from the detection box.

4.3. Body Region

We follow Zhang et al. [31] to fine tune the AlexNet [15]
using body regions on the training set. Given a head bound-
ing box centered at (x, y) of size (w, h), we estimate the
upper body region to be a box centered at (x − 0.5l, y) of
size (2l, 3l), in which l = min(w, h).

4.4. Score Fusion

To evaluate the different options for fusion, we train
global multi-class classifiers with the face and body regions
respectively for person recognition and fuse the results with
all the options.

An alternative to score-level fusion is to concatenate the
features from all regions to represent the instance and pro-
ceed with the other components for prediction. We observe
that this fusion method performs worse than any of the score
fusion methods, as shown in Table 1.

The weighted average fusion method works best for the
original splits. However, when the setup becomes more
challenging, the learned fixed weights may not help all
probe instances. In the most challenging day splits, it fails
to improve the face recognition performance. The max
pooling fusion gives consistent improvements after fusion.
However, since the prediction scores from different regions
are not calibrated, it is not the most effective. The per-
formance of the confidence-aware fusion method is stable
across all setups. We use this method in our following ex-
periments.

4.5. Framework Components

We introduce several comparison methods, with which
we demonstrate how the components in the proposed frame-
work contribute to the improvement in Table 2.

• baseline method: the confidence-aware fusion of the
global face and body SVMs is our baseline method;

• baseline method with photo-level context: we directly
update the results from the baseline method with the
iterative image label joint inference CRF;
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Figure 6. The recognition accuracy with respect to the number of
nearest neighbors in group-level context on the original splits.

• baseline method with group-level context: we skip the
iterative image label joint inference CRF in Figure 4;

• multi-level contextual model: the full proposed frame-
work in Figure 4.

In Table 1, we demonstrate the effectiveness of exploit-
ing person-level context. In Table 2, we observe that both
the group-level context and photo-level context help im-
prove the recognition accuracy independently. Moreover,
the proposed framework leverages contexts at multiple lev-
els and achieves further improvement.

4.6. Metadata

In Table 2, we also observe that the proposed framework
can leverage extra information, when available, e.g., the al-
bum information, which is presented as grouping of photos.
It helps because the same person usually has more consis-
tent visual appearance in the same album and the total num-
ber of identities are limited in a photo album. As we can
see, the album information consistently helps because it ar-
bitrarily separate irrelevant photos.

4.7. Parameters

We set the spectral embedding dimension to be 400. We
choose top Ncontext = 50 nearest neighbors after spectral
embedding as the photo’s group-level context. In Figure 7,
we show examples of discovered group-level contexts. We
observe the proposed method works with a range of values
for the spectral embedding dimension. We evaluate the in-
fluence of Ncontext to the recognition accuracy. As shown
in Figure 6, the performance is stable with Ncontext in the
range of 10 to 100. A very small Ncontext = 5 degrades the
accuracy due to limited training samples. With a very large
Ncontext, the group specific SVMs degenerate to the global
SVM.

In estimating the label compatibility matrix for the
photo-level joint inference, we set α = 2 for the strength of

Table 3. Recognition accuracy comparison with original labels:
best results with and without extra information are highlighted.

methods original album time day
Oh et al. [21] 86.78% 78.72% 69.29% 46.61%
Zhang et al.

[31] 83.05% - - -

our method 88.75% 83.33% 77.00% 59.35%
ours with

album info. 93.91% 83.44% 80.23% 61.62%

the identity co-occurrence prior and T = 5 for the number
of iterations of the joint inference. The proposed method
works with a range of reasonable values for these parame-
ters.

Note that by setting α = 1, we only encode the identity
mutual exclusion knowledge in the label compatibility ma-
trix, which leads to an accuracy drop compared with α = 2.
For example, in the original splits, the accuracy drops from
87.81% (α = 2) to 85.74% (α = 1).

4.8. Results Comparison

We compare our results with the existing methods on
PIPA in Table 3. The proposed method significantly outper-
forms all the existing methods. The improvement is more
significant for more challenging splits, which demonstrate
the effectiveness of exploiting the contexts at multiple lev-
els. When album information is available, our method ben-
efits from the extra information and achieves even dramatic
improvements.

4.9. Computational Expense

Besides the improved recognition accuracy, we only use
3 deep CNNs in our method which is more efficient than
previous state-of-the-art [21, 31]. Note that Zhang et al. [31]
used more than 100 deep CNNs for feature extraction and
Oh et al. [21] used 17 deep CNNs. Applying a deep CNN
for feature extraction takes a large portion of time budget.
Hence our method is more practical. The photo-level con-
text based update is very efficient that it takes only 90 sec-
onds to process 7, 839 photos, in which half of the instances
are unlabeled.

5. Experiments on the Gallagher Album
In this experiment, we test generalization of our method

for another dataset. To this end, we pick the Gallagher Al-
bum [8] dataset, which is a small collection of family pho-
tos consists of 589 images with 931 annotated faces from 32
people. We show that our method also improves on a single
photo album.

Following the same identification setting, for each iden-
tity, we randomly select half of the instances into the gallery



Figure 7. Examples of group-level contexts (showing top 7 nearest neighbors): red boxes indicate the unlabeled instances and blue boxes
indicate the labeled instances; the first photo in each row (green bounding box) is the testing photo.

Table 4. Recognition accuracy on the Gallagher Album dataset.

components Exp 1 Exp 2 Exp 3
face region

global classifier 83.40% 83.19% 81.93%

body region
global classifier 80.88% 78.78% 78.15%

baseline:
confidence-aware fusion 86.34% 87.61% 85.50%

baseline with
group-level context 85.50% 86.13% 83.19%

baseline with
photo-level context 89.08% 88.66% 87.61%

full multi-level
contextual model 88.87% 86.55% 86.76%

set and the rest into the probe set. We repeat the process to
obtain 3 random splits. To test the generalization of our sys-
tem, we use the same parameters in the evaluation on PIPA.

A small group of people dominate the identity distribu-
tion in this dataset. There are 5 people with totally 777 out
of 931 instances. The rest of the people have a limited num-
ber of instances.

Because most identities are rare in the dataset, we need
to select a very large group of photos as the group-level con-
text to cover them, which is contrary to the motivation of ex-
ploiting the group-level context. Hence, it is better to regard
the whole dataset as a single album and skip the group-level
context component in the proposed framework. As shown
in Table 4, the group-level context does not help because of
the long-tailed identity distribution. However, we observe
consistent improvements with the person-level and photo-

level contexts.

6. Conclusion
In this paper, we propose a multi-level contextual model

for person recognition. Our model exploits discrimina-
tive visual information from multiple regions. We propose
to use a confidence-aware fusion method to integrate the
discriminative information from all the regions. The pro-
posed model uses photo group to reduce the identity search
space and leverage the smaller intra-personal appearance
changes within the same group. It naturally incorporates
metadata such as the album information, when available,
to help group photos, but does not rely on metadata. Ad-
ditionally, the proposed method encodes an identity co-
occurrence prior to jointly infer the identities of instances
in the same photo. Multiple levels of context cues are lever-
aged with the proposed model. We demonstrate significant
improvements over the state-of-the-art results on the chal-
lenging PIPA dataset while being more computationally ef-
ficient.
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