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Abstract
We examine the problem of joint top-down active search

of multiple objects under interaction, e.g., person riding a
bicycle, cups held by the table, etc.. Such objects under in-
teraction often can provide contextual cues to each other
to facilitate more efficient search. By treating each detec-
tor as an agent, we present the first collaborative multi-
agent deep reinforcement learning algorithm to learn the
optimal policy for joint active object localization, which ef-
fectively exploits such beneficial contextual information. We
learn inter-agent communication through cross connections
with gates between the Q-networks, which is facilitated by
a novel multi-agent deep Q-learning algorithm with joint
exploitation sampling. We verify our proposed method on
multiple object detection benchmarks. Not only does our
model help to improve the performance of state-of-the-art
active localization models, it also reveals interesting co-
detection patterns that are intuitively interpretable.

1. Introduction

Given an image, the goal of detecting and localizing ob-
jects is to place a bounding box around the instances of a
pre-defined object class, such as cars, faces, person/people
[5, 29, 3, 1]. With the recent advancement [15, 25, 11] of
deep convolutional neural networks (CNN) on object clas-
sification, generic object detection is also attracting more
and more attention with fast increasing detection accuracy
on popular benchmarks [8, 22, 21, 17].

Recent detectors explore the idea of bottom-up object
region proposals [8], where a relatively small set of a few
thousand windows were pre-selected [28] and evaluated.
Acceleration were made by sharing computation and pool-
ing over the feature maps from the CNN layers [7, 10].
These works were further accelerated by integrating the sep-
arate region proposal step and the classification step into
one network [22, 17] by using so-called “anchors” which
correspond to regular prototype grid in the image space.
However, the number of windows to be evaluated remains
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(a) Single agent detection (b) Joint agent detection

Figure 1. Joint agent detection compared with single agent detec-
tion [2]. The bounding box trajectories are indicated by gradual
color change. Blue is for person and red is for bicycle. Successful
detections are highlighted in bold green. Both objects were de-
tected within 15 iterations by joint detection while single agent de-
tection failed to locate the bicycle even after 200 iterations. (Only
the first 30 iterations were illustrated for visualization purpose).

several thousand. Therefore, the speed of such region-based
methods depends on a heavy use of fast GPUs. When com-
putation power is limited, e.g. only CPUs were available,
these pipelines are inevitably slow.

Active search methods provide a promising complemen-
tary top-down scheme to reduce the number of windows to
be evaluated [19, 9, 2, 32, 18].When searching or localiz-
ing objects, biological vision systems are believed to have a
sequential process with changing retinal fixations that grad-
ually accumulate evidence of certainty [14, 16]. It is there-
fore highly desirable, both biologically and computation-
ally, to explore computational models that facilitate object
search in such top-down behavior.

Typically, these models learn policies to search for an ob-
ject by sequentially translating and/or reshaping the bound-
ing box detector. One can view such a search process as
an agent searching for the rewarding ground truth bound-
ing boxes and exploit reinforcement learning (RL) algo-
rithms to learn a good policy. In general, these methods can
achieve reasonably good performance using only dozens of
steps (effectively the number of windows evaluated).

We examine the problem of joint active search of multi-
ple objects under interaction. On one hand, it is interesting
to consider such a collaborative detection “game” played

1



by multiple agents under an RL setting; on the other hand,
it seems especially beneficial in the context of visual object
localization where different objects often appear with cer-
tain correlated patterns, e.g. person riding a bicycle, cups
held on top of the table etc. Such objects under interaction
often can provide contextual cues to each other [31]. These
cues have good potential to facilitate more efficient search
policies. We make an initial effort to validate such an hy-
pothesis/intuition by devising a computational model.

We present a collaborative multi-agent deep RL algo-
rithm to learn the optimal policy for joint active object lo-
calization. Our proposal follows existing wisdom to exploit
RL methods but allows for collaborative behaviors among
multiple agents in order to utilize contextual information.
In this regard, two key questions are open. i) How to make
communications effective in between different agents; and
ii) how to jointly learn good policies for all agents.

We propose to learn inter-agent communication through
gated cross connections between the Q-networks. This is fa-
cilitated by a novel multi-agent deep Q-learning algorithm
with joint exploitation sampling and a virtual agent based
implementation. Finally, we verify our proposed method
on multiple object detection benchmarks. Our model helps
to improve the performance of state-of-the-art active local-
ization models and it also reveals interesting co-detection
patterns that are intuitively interpretable.

In Section 2, we discuss literatures related to our work.
In Section 3, we present the details of the proposed cross Q-
network structure and a novel multi-agent deep Q-learning
algorithm that effectively facilitate training of the crossed
Q-networks. In Section 4, we present comprehensive ex-
periments on multiple popular benchmarks. Section 5 con-
cludes this paper. Here, we summarize our major contribu-
tions as follows.

• To our best knowledge, this work presents the first col-
laborative deep RL solution for joint active object lo-
calization.

• We propose a novel multi-agent Q-learning solution
that facilitates learnable inter-agent communication
with gated cross connections between the Q-networks.

• Our proposal effectively exploits beneficial contextual
information between related objects and consistently
improve the performance of state-of-the-art active lo-
calization models.

2. Related Work
Active search. The idea of active search for localization
is not brand new. To name a few, “saccade and fixate” bio-
logical pattern were explored in the field of visual attention
[14, 16, 30]. In [4], Dollar et al. proposed to estimate pose
through cascaded regression steps learnt through gradient

descent etc. Latest works on object localization managed to
exploit the power of deep learning and achieved more com-
petitive results [19, 9, 2, 32, 18].

In [19], Mnih et al. proposed a recurrent neural network
(RNN) based localization network that accumulatively finds
numbers from the cluttered translated MNIST dataset. In
[9], Garcia et al. proposed to explore statistical relations
between consecutive windows and based their model on
R-CNN [8] for generic object detection. In [32], Yoo et
al. proposed “AttentionNet” where at each current win-
dow, a CNN was trained to predict quantized weak direc-
tions for the next step to simulate a gradual attention shift.
In [2, 18], the authors explicitly deployed deep RL and
achieved promising performance with much fewer window
evaluations than main stream region proposal methods.

However, none of these works examine the problem of
joint active search of multiple objects. In order to exploit
beneficial contextual information among differnt objects,
we present collaborative multi-agent deep RL. We instan-
tiate our idea with Caicedo and Lazebnik [2] as a single
active search model baseline, but our mechanism could be
applied to other baseline models with minor adaptation.
Deep reinforcement learning. Recently, the field of rein-
forcement learning revives with the power of deep learning
[20, 24]. Equipped with effective ideas such as experience
replay etc., conventional methods, e.g. Q-learning, work out
very effectively in learning good policies without interme-
diate supervision for challenging tasks. Our model benefits
from these effective ideas in a similar way as recent active
methods [2, 18] but with specific novel designs motivated
by the joint search problem of interest.

Multi-agent machine learning and reinforcement learn-
ing are not new topics. However, conventional collabo-
rative RL methods mostly explore hand-crafted communi-
cation protocols [27, 23]. During the preparation of this
work, we realize two interesting work that proposed to fa-
cilitate learnable communication protocols for multi-agent
deep RL [6, 26] and demonstrate superior performance to
non-communication counterparts on control management
and game related tasks. In [26], Sukhbaatar et al. pro-
posed “CommNet” where policy networks are facilitated
with learnable communication channels learnt via back-
propagation. In [6], Foerster et al. proposed “Differentiable
Inter-Agent Learning” to effectively learn communication
for deep Q-networks.

Our proposal share the idea of utilizing back-propagation
or designing differentiable communication channels but
have different cross network structure with gates and a novel
joint sampling Q-learning method. Specifically, our cross
network structure used explicit gating mechanism to allow
a specific agent to be responsible for certain actions. This is
motivated by the problem of object search where one agent
usually has primary contribution to the policy. Also dif-



ferent from the training of the unfolded RNNs as in [6],
where long range back-propagation may be less effective,
our joint sampling design facilitates immediate updates of
the parameters and could be easily incorporated into the
deep Q-learning algorithm by introducing an auxiliary con-
cept of virtual agent implementation.

3. Collaborative RL for Joint Object Search
We start by recalling a state-of-the-art (single agent) RL

method for object localization [2].

3.1. Single Agent RL Object Localization

Reinforcement learning provides a formal framework
concerned with how agents take actions in an environment
so as to maximize some notion of cumulative reward. For-
mally, RL defines a set of actions A that an agent takes to
achieve its goal; a set of states S that represents the agent’s
understanding/information of the current environment; and
a reward function R that helps to learn an optimal policy to
guide the agent’s actions based on its states.

In [2], the entire image is viewed as the environment.
The agent transforms a bounding box according to a set of
actions. The goal of the agent is to land a bounding box
at the target object’s location. Specifically, the set of ac-
tions were defined as follows. A := {move right, move left,
move up, move down, scale bigger, scale smaller, aspect ra-
tio change fatter, aspect ratio change taller, trigger }. Each
action makes a discrete change to the box by a factor rel-
ative to its current size. The action trigger means that the
agent thinks it finds the object.

The state representation is defined as a tuple s := (o, h).
o is a feature vector of the observed region (plus some extra
margin for context) extracted from a CNN layer, and h is
a fixed-size vector of the action history. The concatenation
of o and h is fed into a typical Q-network of two fully con-
nected layers. The network outputs a 9-dimensional vector
corresponds to nine action choices. In Figure 2, the net-
works shown in the same color e.g. in blue/red provide il-
lustrations of this architecture.

The reward functionR(a, s→ s′) is defined for an agent
when it takes the action a to move from state s to s′.

R(a, s→ s′) = sign(IoU(b′, g)− IoU(b, g)) (1)

where IoU(b, g) = area(b ∩ g)/area(b ∪ g) is the
Intersection-over-Union (IoU) between the target object
bounding box g and the predicted box b.

With the action set, state set and reward function defined,
the authors in [2] directly applied deep Q-learning [20] to
learn the optimal policy. More details on setting parameters
can be found in [2]. They also proposed an interesting de-
sign for setting masks in the image after taking the trigger
action. This design allows for effective detection of multi-
ple instances of the same class. Finally, the authors applied

a post SVM classifier to all windows in the trajectory to
boost performance.

3.2. Collaborative RL for Joint Object Localization

We generalize the single agent RL model for joint ob-
ject search. The key concepts include gated cross connec-
tions between different Q-networks; joint exploitation sam-
pling for generating corresponding training data, and a vir-
tual agent implementation that facilitates easy adaptation to
existing deep Q-learning algorithm.

3.2.1 Q-Networks with Gated Cross Connections

Specifically, Q-learning is an RL algorithm used to find an
optimal action-selection policy. The Q-function (action-
value function) of a policy π is defined as Qπ(s, a) =
E[Rt|st = s, at = a] where the subscribes of t de-
note the time step. The optimal action-value function
obeys the Bellman optimality equation Q∗(s, a) = Es′ [r +
γmaxa′ Q

∗(s′, a′)|s, a] where r = R(a, s→ s′) is the spe-
cific reward by taking action a to move state s to s′ and
γ ∈ [0, 1] is a discount factor for future returns.

Deep Q-learning [20] uses deep neural networks to rep-
resent the Q-function, i.e. Q(s, a; θ) where θ is the net-
work parameters. (A common choice of the Q-network
consists of two fully connected layers as illustrated in
Figure 2.) Note that, suppose for each agent i we in-
stantiate one Q-network Q(i)(a(i), s(i); θ(i)), in the set-
ting of multi-agent RL, one would naturally desire a Q-
function (with a slight abuse of notation, we keep using
Q-function here) that facilitates inter-agent communication
Q(i)(a(i),m(i), s(i),m(−i); θ(i)) where m(i) denotes some
form of messages sent out from agent i and m(−i) denotes
messages received from other agents.

Conventionally, m is often hand crafted based on prior
knowledge about the actions and the states. This can be for-
malized as a function of m(a, s; θm) where θm is manually
designed. Therefore, a natural idea would be to construct
differential messages where θm could be learned via gradi-
ent back-propagation. This idea is intuitive and reasonable
in the same sense of many deep learning successes where
learnable features outperform hand crafted ones.

Specifically, we define an agent-wise Q-function as

Q := Q(i)(a(i),m(i), s(i),m(−i); θ(i)a , θ(i)m ), (2)

where θa and θm represents parameters related to actions
and messages respectively.

We would now argue that when Q-function were parame-
terized with deep networks, there are intuitively to the order
of L2 (L is the number of layers of the Q-network) possible
configurations for us to construct message channels. This
is because the messages could be emitted and received at
any layers. Moveover, there should be no global optimal



Figure 2. Joint Q-network with gated cross connections and the collaborative reinforcement learning pipeline.

configuration, instead suitable configuration of the message
channel should be selected in a problem-dependent manner.

We notice two recent work also propose to facilitate
learnable communication protocols for multi-agent deep RL
[6, 26] applied to control management and game related
tasks respectively. However, we notice that one important
insight is missing from the current trend. Messages are
often taken-in in a non-discriminative manner and merged
with the information flows in the network directly. Actually,
allowing the messages to go through an explicit learnable
gate (as did in LSTM cells [12]) helps better merging the
information and facilitates agent-responsible actions.

The idea is motivated from the search problem of our
interest. In general, when searching for a specific object, we
would like the agent in charge of detecting the target class
to be a primary source of making decisions. Meanwhile we
also want to allow other agents to contribute their advices
especially when the primary source feels confused in certain
situations. Learnable gating mechanism is a natural fit.

Specifically, we design our cross Q-network message
channels as illustrated in Figure 2. We add cross connec-
tion from the penultimate layer between Q-networks of dif-
ferent agents. We denote the output from this layer of the
Q-network of agent i as x(i)

L−1. We then have

x̄(i) = σ(W (ii)x
(i)
L−1 + b(ii))

g(i) = σ(W (ig)x̄(i) + b(ig))

m(i) = σ(W (im)x
(i)
L−1 + b(im))

(3)

where σ represent the sigmoid function such that σ(z) =
1/(1 + exp(−z)).

Now instead of directly inputting x
(i)
L−1 to the next layer

as in the single agent case, we also take in the messages
from other sources weighted by gates and define

x
(i)
L = g(i) · x̄(i) + (1− g(i)) ·m(−i) (4)

Note that, the sigmoid function tends to push the output to
approximately 0 or 1. Therefore, with this simple gating in-

duced, we are able to learn effective agent-responsible deci-
sions. This helps us to better understand the searching pro-
cess. Moreover, now that many actions were effectively de-
termined by one primary agent (and so will the correspond-
ing gradient updates discussed later), one can directly apply
learnt networks even when other agents do not co-exist.

3.2.2 Joint Exploitation Sampling

We now turn to the problem of jointly training all Q-
networks. Since we do not have any immediate supervi-
sion in an RL setting, we cannot directly back propagate
gradients in a multi-task manner. The key idea is to jointly
sample the next steps during the exploitation phase.

Specifically, in the case of a single agent, in order to
reach the Bellman optimality, the Q-learning algorithm
proceeds in an iterative fashion. At each iteration, one
would sample/choose an action at according to the cur-
rent estimate of the Q-function. One then executes this ac-
tion at in the emulator and observes reward rt and state
st+1. After this, one updates the parameters of the Q-
function by minimizing the distance of (Q(at, st; θ)−(rt+
γmaxa′ Q(a′, st+1; θ−)))2. Here θ− are the parameters of
a target network. θ− can be a copy of the online network
but often is another network frozen for a number of itera-
tions while one updates the online network Q(a, s; θ) [20].

In the multi-agent setting, we propose to sample the ac-
tion a(i)t of agent i according to both the activations of itself
and the messages from other agents. We jointly perform
such sampling to all the agents. For instance, in Figure 2,
this corresponds to a joint feed-forward pass from both net-
works. These samples are later used to update all parame-
ters by jointly minimizing the following distance for all i.

L(i) := (Q(i)(a
(i)
t ,m

(i)
t , s

(i)
t ,m

(−i)
t ; θ(i)a , θ(i)m )−

(r
(i)
t + γmax

a′(i)
Q(a′(i), s

(i)
t+1; θ(i)−a , θ(i)−m )))2

(5)

Since the messages are also differential, joint minimiza-
tion of the above functions will update parameters related
to each of the agents as well as all the message channels



in-between. Specifically, the gradient updates of θ(i)a comes
from the loss of itself i.e. L(i), while the gradient updates
of θ(i)m comes from the loss of other agents i.e. L(−i).

Note that, in principle we could view all agents un-
der one global Markov decision process (MDP) assump-
tion and search for an optimality in the joint action space
using the regular Q-learning algorithm. The flip side of
this choice, however, is a much larger searching space (81
v.s. 18 in the two agent case) that may require combina-
torially much more training data and time. In this regard,
the proposed joint sampling strategy can be viewed as an
upper-bounding approximation to global optimal. However,
we observe that this proposal effectively facilitates gradient
back-propagation to all the parameters and can jointly learn
good policies for all the Q-networks as desired.

3.2.3 Virtual-Agent Implementation of Joint Training
Intuitively the joint sampling idea can be implemented via
simultaneously forward and backward passes through all Q-
networks. However in practice, we adopted an alternative
implementation with a concept of virtual agents. For each
Q-network of an object class, we assign an actual agent de-
tector. Meantime, for each cross network connection we
assign a what we call virtual agent. The virtual agents share
weights of the corresponding layers with the actual agents.
Figure 3 illustrates this idea for the example of Figure 2.

There are two major advantages of this implementation.
1) By considering agents in such a separate manner (and
share weights afterwards), we can easily incorporate our de-
sign to almost all existing RL algorithms. One can simply
implement an extra outer for-loop for all agents followed by
necessary weight copying steps. 2) More importantly, this
also allows each agent, including virtual ones, to maintain
its own pool (replay memory [20]) of samples. These sam-
ples are used for updating the corresponding parameters.
Note that in modern RL algorithms with deep networks, the
concept of replay memory pool are extremely important for
stabilizing the learning process.

For example, suppose we would like to jointly train per-
son and bicycle detectors. During training, we have images
that contain both classes Dboth and also images that only
contain either person Dperson or bicycles Dbicycle. Benefit
from an agent-wise replay memory as proposed, the actual
person and bicycle agents could be effectively trained with
data from Dboth ∪ Dperson and Dboth ∪ Dbicycle respec-
tively, while the cross connections (represented by virtual
agents) are only trained with data from Dboth as desired.

Finally, we update the denotation of the Q-functions in
the context of the virtual agent implementation as follows.

Q(i)
a (a(i), s(i); θ

(i)
share, θ

(i)
self );

Q(i→j)
v (a(i), s(i); θ

(i)
share, θ

(i→j)
self ).

(6)

The main changes from the definition in Equation (2)

Figure 3. An illustration of the actual and virtual agents of the
example in Figure 2. Each row represents one agent and the dashed
ones in the middle are virtual agents.

are to use θ
(i→j)
self to replace the conceptual out-message

m(−i) and to use post addition to replace the conceptual in-
message m(i). (Note that, as illustrated in Figure 3, we put
the gating part inside the Q-function by definition.) Specif-
ically, we summarize the final multi-agent Q-learning algo-
rithm with joint sampling and virtual agent in Algorithm 1.
Although the algorithm applies in general cases, we usually
consider only two object classes at the same time, therefore
the number of virtual agents is very controllable.

4. Experiments
4.1. Data Construction and Implementation Details

Although different classes of objects co-exist in many
situations in real life, there are few datasets explicitly col-
lect data for joint detection tasks. However, we notice that
many images from popular detection datasets such as the
PASCAL VOC datasets and the COCO dataset have labeled
objects of different classes and these images were catego-
rized under all related classes. These images naturally pro-
vide a source for us to construct some useful datasets to
validate our hypothesis and methods. Specifically, we se-
lected: {person+bicycle (VOC), ball+racket (COCO), per-
son+handbag (COCO), keyboard+laptop (COCO)}. With
these pairs, we construct two datasets for evaluation pur-
pose. D1 consists of images that only contain one object
for each class. This dataset is used to prove certain con-
cepts since learning and testing tend to be more effective on
this relatively cleaned dataset. D2 consists of all images of
the person and bicycle categories from the PASCAL VOC
datasets. This one is used to evaluated our proposed method
against results of existing single agent models.

For comparison purpose, we implemented the single
agent model precisely according to [2]. We manage to have
achieved very close performance as reported in [2] though



Figure 4. Joint agent detection (mid) compared with single agent detection (bottom). The bounding box trajectories are indicated by gradual
color change with blue and red each for one detector. Successful detections are highlighted in bold green.

not exactly the same. The differences may be due to the
randomness involved in sampling.

In the case of multiple agents, cross connections be-
tween Q-networks are implemented as a fully connected
layer from one agent’s penultimate layer to another agent’s
last layer with a post multiplication by a scalar gate as de-
fined in Equation (3). The dimensions are consistent with
the corresponding layers in the single agents. For joint train-
ing, we initialize each actual single agent network using
pre-trained models and initialize cross connection with ran-
dom weights. We applied the ε-greedy strategy of [2] where
we have tuned the learning rates to achieve better conver-
gence in our case. We report detection results from the joint
model on dataset D1 since it contains both classes by con-
struction; and report detection results using fine-tuned sin-
gle agent model by joint training, which demonstrates the
ability of the gating mechanism to facilitate agent specific
inference and learning.

4.2. Improvement over Single Agent Methods

In Table 3 and Table 2, we demonstrate the performance
of our proposal when compared with single agent models.
Our joint model consistently outperforms the single agent
model on datasetD1. We notice that on the combinations of
person+bicycle (VOC) and laptop+keyboard (COCO), the
improvement is much more obvious. This is because the

configuration of these combinations are relatively more sta-
ble across images, e.g. person riding a bike and laptop con-
tains the keyboard etc. Meanwhile, the configurations of
person+handbag (COCO) and ball+racket (COCO) have
multiple modes in all the images and more “noisy” images
that contain little information for co-localization.

When tested on dataset D2, our joint model also
achieved better performance than single active search mod-
els. The performance gain is moderate in this case. This
is because the number of images containing both object
classes is small when compared with that for each category,
therefore the extra information gain is diluted. This is es-
pecially the case for the person category whose number of
images is much larger. Note that, state-of-the-art detection
models such as R-CNN [8] and its extensions can achieve
better results when using tens of times more windows. But
it is not our focus here.

In Figure 4, we illustrate the search process with some
examples. In these cases, while our joint detection model
successfully locates objects from both categories, the single
agent model often only detects one or neither of them cor-
rectly. The locations of the final bounding boxes found by
the joint model also seem better overlapped with the ground
truth objects. Moreover, the number of steps taken by the
joint model is much smaller. For example, from top to bot-
tom, the illustrated number of steps for our model are: 10,



Initialize replay memory of all agents D(i);
Initialize all Q-networks with random weights (or

potentially with pre-trained networks);
for episode = 1,M do

Initialize sequence s(i)1 = φ(x1) for all i;
for t=1,T do

With probability ε select a random action a(i)t ,
otherwise select
a
(i)
t = arg maxa{Qa(a, s

(i)
t ; θ

(i)
share, θ

(i)
self )

+
∑
j 6=iQv(a, s

(j)
t ; θ

(j)
share, θ

(j→i)
share)}

;

Execute action a(i)t in emulator and observe
reward r(i)t ;

Set s(i)t+1 with s(i)t , a
(i)
t ;

Store transition
(
s
(i)
t , a

(i)
t , r

(i)
t , s

(i)
t+1

)
in D(i)

and D(j→i) for all j;
Sample random mini-batch of transitions(
s
(i)
t′ , a

(i)
t′ , r

(i)
t′ , s

(i)
t′+1

)
from D(i);

Set y(i)t′ ={
r
(i)
t′ if terminates at t′ + 1

r
(i)
t′ + γmaxa′ Q̂a(ait′ , s

(i)
t′+1; θ(i)−) else

;

Perform a gradient descent step on
(y

(i)
t′ −Qa(a

(i)
t′ , s

(i)
t′+1; θ

(i)
share, θ

(i)
self ))2 with

respect to θ(i)share, θ
(i)
self ;

Copy θishare to all virtual agents (i→ j);
for j 6= i do

Sample mini-batch from D(j→i);
Update θ(j)share, θ

(j→i)
self of the virtual agents

Q
(j→i)
v as above;

Copy θjshare to actual agent j;
end

end
end
Algorithm 1: Multi-agent Q-Learning Algorithm

Table 1. Localization accuracy on D1. Top: single, bottom: joint.
(VOC) (COCO) (COCO) (COCO)

person bike ball racket person hbag laptop kboard
76.9 61.5 52.0 59.3 80.4 45.1 60.6 56.9
86.0 77.8 53.9 60.2 82.5 46.4 64.6 64.7

24, 7 and 11 respectively. We show the first 30 steps of the
single model for visualization purpose. Actually, in all these
three cases, the single agent model failed to locate both ob-
jects within 200 steps. In practice, our model only uses
several tens of steps to locate both objects and the number
of steps are often less than when using two single agents,
which was shown to be consistently superior to region pro-

Table 2. Localization accuracy on D2.
D2 person (VOC) bicycle (VOC)

Mathe et al. [18] 18.7 31.4
Caicedo et al. [2] 45.7 61.9

Ours (Single) 44.6 62.2
Ours (Joint) 45.6 63.9
R-CNN [8] 54.2 69.7

Figure 5. Examples of actions dominated by specific agents. The
solid bounding boxes illustrate the current positions of each detec-
tor. The dashed bounding boxes illustrate the next positions and
indicate the corresponding actions. Blue is for person and red is
for bicycle. The agent which dominates the choice of action (by
checking the gate value) are highlighted in bold black.

posal methods when using limited number of proposals [2].
The agents in a joint model help each other in a rational

fashion. For example, in the first column of Figure 4, the
bicycle looks relatively less distinguishable from the back-
ground of bushes. While the single bicycle agent fails to
locate its target, in the joint model, the detection of the per-
son seems to help locate the bicycle since it often presents
the pattern of a person riding a bicycle. In the second col-
umn, the tennis ball looks very small and a single tennis ball
agent has trouble finding it; meanwhile benefit from the co-
existing pattern with the racket learnt by the joint model,
we can successfully detect the ball. The third and fourth
column also demonstrate cases where a relatively easy-to-
detect object (person and keyboard in these cases) helps to
locate the more challenging ones (bag and laptop) due to
learnt co-existing patterns.

4.3. Step by Step Examination

In Figure 5, we demonstrate some examples of actions,
the choice of which were dominated by specific agents. As
the left two images show, when the clue of the primary agent



Figure 6. Recall as a function of the number of proposed regions.
Compared with region proposal methods, active search methods
are better at early recall: only several tens of proposals per image
reach 50% recall. Our joint model is even better than the single
agent model.

is clear, the actions are often taken according to themselves.
For example, given their current input bounding boxes, the
bicycle agent knows to scale smaller in the top left image
and the person agent knows to move right in the bottom left
image.

However, in cases where the primary agent is less con-
fident of itself, our proposal effectively queries information
from other agents. For instance, in the bottom right image,
the bicycle detector were pushed down, but this action is
primarily decided by the person agent. This is probably be-
cause the person detector has triggered a target and it feels
more certain about the situation. Due to the learnt pattern,
it fires relatively strong signals indicating a bicycle under-
neath and helps to push the red box downwards. Of course
this does not necessarily mean the primary bicycle agent has
to make the wrong choice of actions, but simply it may be
less confident given its relatively noisy current input.

4.4. Evaluation of Recall

Note that, for active search methods, all the regions at-
tended by the agents can be viewed as object proposal can-
didates. [2] claimed that the single agent localization al-
gorithm can achieve higher recall values when compared
with state-of-the-art object proposal methods with limited
number of box proposals. We followed their setup and
performed the same test to our joint model. In Figure 6,
our experiments demonstrate that the proposed multi-agent
method has a high recall value when using less proposals.
Following the evaluation methods of Hosang et al. [13], we
compare the recall of ours with those of the single agent
baseline [2] as well as one state-of-the-art object proposal
method, Edgebox [33]. The results are from the combina-
tion of person+bicycle (VOC) which provides stable con-
figurations.

4.5. Failure Case Analysis

In Figure 7, we show one interesting failure case of our
method. In this case, our joint model correctly detects the

Figure 7. One failure case of joint detection. The true location of
the tennis ball is highlighted with dashed yellow circle in the left
image. Left: joint agent detection; right: single agent detection.

racket but falsely locates a tennis ball on top of the racket.
Meanwhile the true location of the ball is far away to the
right. This phenomenon of over-fitting raises one important
question. Does joint detection always help? The answer is
clearly NO in general cases. Many combinations are not
meaningful in the regard of joint detection. Actually, one
can barely find shared images for totally unrelated object
pairs such as, e.g. “bird+car” etc. However, we did explore
several more combinations that often coexist but have less
spatial correlations. The results are shown as follows.

Table 3. Localization accuracy. Top: single, bottom: joint.
(COCO) (COCO) (COCO) (ImageNet)

fork knife oven sink chair tv guitar mike
31.9 45.2 38.2 34.3 35.1 57.1 80.9 45.4
34.7 46.9 42.4 37.7 35.9 56.2 87.7 50.2

We noticed that even though such pairs do not display
a fixed spatial correlation, they often have several major
configurations of coexisting patterns. Therefore we can
still consistently achieve better performance than single
agent models, showcasing that meaningful messages were
learned. The pair of “chair+tv” is the least of this case and
the positions of chairs and televisions in the images seem
rather random even though they often coexist. In this set-
ting, our joint model achieved similar performance with sin-
gle models. This phenomenon shows that when no clear
collaborative information exists, our proposal can perform
as well as single agent models without messing up. We at-
tribute this property to the gating mechanism by design.

5. Conclusion
Joint search of multiple objects under interaction often

provides contextual cues to each other. By treating each de-
tector as an agent, we present the first collaborative multi-
agent deep reinforcement learning method that effectively
learns the optimal policy for joint active object localiza-
tion. Our technical contributions lie in the learnable cross
Q-network communications and the joint exploitation sam-
pling strategy. More importantly, we make a first stab to
validate the concept of collaborative object localization by
devising a computational model, which reveals interesting
and intuitive co-detection patterns.
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