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Abstract

We present a new distance measure between sequences
that can tackle local temporal distortion and periodic se-
quences with arbitrary starting points. Through viewing
the instances of sequences as empirical samples of an un-
known distribution, we cast the calculation of the distance
between sequences as the optimal transport problem. To p-
reserve the inherent temporal relationships of the instances
in sequences, we smooth the optimal transport problem with
two novel temporal regularization terms. The inverse dif-
ference moment regularization enforces transport with lo-
cal homogeneous structures, and the KL-divergence with
a prior distribution regularization prevents transport be-
tween instances with far temporal positions. We show that
this problem can be efficiently optimized through the ma-
trix scaling algorithm. Extensive experiments on differen-
t datasets with different classifiers show that the proposed
distance outperforms the traditional DTW variants and the
smoothed optimal transport distance without temporal reg-
ularization.

1. Introduction
Effectively measuring the distance between sequences

plays a fundamental role in a wide range of sequence pattern
analysis problems. Due to the inherent complexity of se-
quence data, defining distance measures for sequences can
be much more difficult than for vectors. First of all, the
evolution speed of instances in different sequences may be
quite different. For example, different subjects may perfor-
m the same action with different speeds. The sampling rate
for different sequences may also be different. As a result,
although the instances in sequences have a fixed dimension-
ality, different sequences generally have different numbers
of instances. Therefore, conventional distance measures for
vectors such as Euclidean distance, Lp norms, and Maha-
lanobis distance cannot be directly applied to sequences.

Secondly, the evolutions of instances in sequences are
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Figure 1. The two stroke sequences of the same online charac-
ter differ in local orders at the first and last three positions. (a)
The alignments generated by DTW are disturbed by such local or-
der reversal since DTW preserves the temporal positions strictly,
where the misalignments are shown in bold. (b) If only the stroke
shape is considered, Sinkhorn (smoothed OT) aligns the same
stroke “dot” appeared in different temporal positions. (c) The pro-
posed OPW is able to generate proper alignments that can tackle
local order distortion by jointly considering the shape matching
and temporal orders. The alignments shown in (b) and (c) are the
largest transports associated with instances of the second sequence
in the learned OT.

not uniform. For example, when performing the same ac-
tion of “kicking a ball”, one person may spend more time on
the run-up and the other may keep the leg raised longer. As
a result, instances of different sequences in the same tempo-



ral position may correspond to different poses. Therefore,
temporal alignments are necessary when comparing differ-
ent sequences. In addition, local temporal ordering of in-
stances in sequences describing the same pattern may also
vary.

We show an example in Fig. 1(a). The correct order of
strokes to write the Chinese character is shown at the top. A
very common wrong stroke order of this character is shown
in the bottom, where the orders of the dots are reversed at
the beginning and close to the end. This means that the strict
rank preservation may not be imposed to the alignments.

Thirdly, the instances in the same sequence are not inde-
pendent samples, but are temporally related. For example,
without considering the orders of frames, the two action-
s “stand up” and “sit down” performed by the same per-
son cannot be distinguished. This prevents the application
of distances between sets, distributions or bags such as the
Jaccard index, the Chernoff distance [11, 28] and the KL
divergence [15] to sequences.

Last but not least, for periodic patterns or events, dif-
ferent sequence samples may start from different instances.
For example, as shown in Fig. 2, both performing the ac-
tion “jogging”, one person may start with lifting the left leg
while stretching the right arm and another person may s-
tart with lifting the right leg while stretching the left arm.
The starting (ending points) of different sequences cannot
be forced to align and flexible alignments are required.

A lot of efforts have been made to find meaningful dis-
tance measures between sequences that can tackle these is-
sues. Dynamic time warping (DTW) [22] is perhaps the
most widely adopted. DTW is able to align sequences with
different lengths, speeds, and non-homogeneity. Howev-
er, the alignments determined by DTW preserve the order-
s strictly, i.e., no instance in one sequence is allowed to
align to instances in the other sequence before the instance
aligned in the previous step. As shown in Fig. 1, when local
reverses or temporal distortions exist, erroneous alignments
are unavoidable, which also affect other regular alignments.
The boundary condition of DTW requires the starting and
ending points of the two sequences be aligned. This will
lead to erroneous alignments for periodic sequences with
different starting points as shown in Fig. 2(a).

By viewing the instances in a sequence as empirical sam-
ples from a probability distribution or a set of vector points,
optimal transport (OT) [31] or its smoothed and compu-
tationally efficient version, the Sinkhorn distance [9], pro-
vides a canonical way to automatically lift the geometry be-
tween instances to define a distance measure for two se-
quences, which has many excellent properties such as exis-
tence of optimal maps, separability, and completeness.

The learned transport naturally defines flexible align-
ments between two sets. Generally, the optimal transport
only assigns large weights to the most similar instance pairs.
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Figure 2. The two periodic sequences of the “jogging” action start
from different states. The right arm is first lifted in the top se-
quence while the left arm is first lifted in the bottom sequence. (a)
Misalignments are introduced by DTW due to the strict temporal
constraint. (b) Sinkhorn aligns the frames representing the most
similar poses even when the relative temporal positions of the two
frames are very far. As a result, long connection lines occur fre-
quently in the alignments. The first few frames of one sequence
are aligned to the rear frames of the other sequence across a com-
plete periodic cycle. (c) The proposed OPW aligns each frame in
one sequence to the frame with the same pose of the temporally
adjacent cycle in the other sequence. The generated alignments
exhibit periodic segments.

Although OT can solve the local rank reverses and different
starting points, it fully ignores the inherent temporal depen-
dencies of instances. As shown in Fig 1(b), if only the shape
features are considered, the two dots in the right parts are
largely transported to the dot in the left radical. The poses
are mainly transported to the most similar poses in distant
cycles in Fig. 2(b).

To incorporate the advantages of flexibility of optimal
transport and order preserving alignments, we develop a
new distance measure between sequences by imposing tem-
poral constraints on the optimal transport, namely Order-
Preserving Wasserstein (OPW) distance. The resulting met-
ric inherits some excellent properties of OT while capturing
the general temporal orders of instances, leading to flexible
temporal-sensitive alignments. As shown in Fig. 1(c), and
Fig. 2(c), the proposed distance measure can properly ad-
dress these issues which are problematic for DTW and OT.

The main contributions of this paper are summarized as
follows: 1. we adapt the optimal transport as the basis for
distance measures between sequences, which has many ex-



cellent mathematic properties and is robust to local rank re-
verses and periodic patterns with different starting points;
2. we propose two novel temporal regularizations to pun-
ish transports or alignments between instances with distant
temporal positions, such that the learned optimal transport
is capable of preserving the temporal dependencies of in-
stances in sequences; 3. we show that the regularized OT
problem can be efficiently solved by Sinkhorn’s matrix s-
caling algorithm [26]. We empirically demonstrate that the
proposed OPW distance outperforms DTW and Sinkhorn
distances on different tasks with different classifiers.

2. Related Work
Most studies on distance measures for sequences mainly

focus on improving DTW. In [19], a locality constraint is
used to constrain the amount of warping. Various methods
are developed either to speed up the computation of DTW,
such as the FastDTW [23] and the SparseDTW [1], or to
accelerate the calculation of all-pairwise DTW matrix [25].
Originally, the Longest Common Subsequence (LCSS) dis-
tance [6] and the edit distance [18] are designed to compare
string sequences. Some efforts [32, 17] attempt to extend
them to handle continuous multi-dimensional sequences,
and lead to DTW-like algorithms. Canonical Time Warp-
ing [36] and generalized time warping [35] extend DTW to
handle multi-modal sequences whose instances may have
different dimensions. These methods are generally DTW-
based and suffer from similar issues of DTW.

In [20], a new weight sequence is generated by mapping
the original sequence to the learned semi-continuous HM-
M and extracting the mixture weight vectors of states. The
distance between the original sequences is defined as the
DTW distance between the weight sequences. In [27, 29],
the HMM-based statistics are extracted from each set of se-
quences. The DTW distance between the statistics is used
as the distance measure between sets of sequences or se-
quence classes. These methods are also DTW-based and a
pre-training of HMM is needed.

In [30], based on the transported square-root vector field
representation, a rate-invariant distance is derived for tra-
jectories, which is further applied to action recognition
in [3]. Similar to DTW, this distance is also strictly order-
preserving. In contrast, the proposed method in this paper
allows local reorders, which can tackle local temporal irreg-
ular evolutions and outlier frames, while does not affect the
distinguish of sequences from different classes. Generally,
the methods for learning alignments such as [34, 14] not on-
ly require supervised learning with ground-truth alignments
or class labels, but also do not directly generate a distance
measure. In this paper, we develop an unsupervised distance
measure for any types of sequences. The distance between
any two sequences can be directly computed without either
supervised or unsupervised training from other sequences.

Recently, the optimal transport is receiving growing at-
tentions, such as the fast computation [9, 4], the application
of computing barycenters [10], generating of PCA [24], and
loss definition [13]. To our knowledge, we are the first to
adapt OT as the similarity measure for sequences.

3. Background on Optimal Transport
Optimal transport [31], also known as Wasserstein dis-

tance, measures the dissimilarity between two probability
distributions over a metric space. Intuitively, if each distri-
bution is viewed as a way of piling up a unit amount of dirt
on the space, the Wasserstein distance is the minimum cost
of transporting the pile of one distribution into the pile of
the other distribution. Therefore, the Wasserstein distance
is also known as the earth mover’s distance [21].

Formally, given a complete separable metric space
(Ω, d), where d : Ω × Ω → R is the metric on the s-
pace Ω, let P (Ω) denotes the set of all Borel probability
measures on Ω. Given two sets X = (x1, · · · ,xN ) and
Y = (y1, · · · ,yM ) of sample points in Ω, their corre-
sponding empirical probability measures can be estimated

as f =
N∑
i=1

αiδxi ∈ P (Ω) and g =
M∑
j=1

βjδyj ∈ P (Ω), re-

spectively, where δx is the Dirac unit mass on the position
of x in Ω, N and M are the numbers of points in the two
sets X and Y , respectively. αi is the weight on the unit
mass on xi.

Since f is a probability distribution, the correspond-
ing weight vector α = (α1, · · · , αN ) lies in the simplex

ΘN := {α ∈ RN |αi ≥ 0, ∀i = 1, · · · , N,
N∑
i=1

αi = 1}.

Similarly, β = (β1, · · · , βM ) ∈ ΘM . Without any prior
knowledge on the samples, the points can be viewed as uni-
formly sampled from each distribution, and the weights can
be estimated as α = ( 1

N , · · · , 1
N ) and β = ( 1

M , · · · , 1
M ),

respectively.
The empirical joint probability measure of (X,Y ) can

be estimated as

h =

N∑
i=1

M∑
j=1

γij(δxi , δyj ), (1)

whose marginal measures w.r.t. X and Y are f and g, re-
spectively. Thus the weight matrix [γij ]ij is a N ×M non-
negative matrix with row and column marginals α and β,
respectively. The set of all the feasible weight matrices is
defined as the transportation polytope U(α,β) of α and β:

U(α,β) := {T ∈ RN×M
+ |T1M = α,T T1N = β}. (2)

An element tij of a feasible T can be viewed as the
amount of mass transported from xi to yj . The distance
between xi and yj is measured by the metric d raised to the



power p. All the pairwise distances between elements in X
and Y are stored in the matrix D, i.e.,

D := [d(xi,yj)
p]ij ∈ RN×M . (3)

The cost of transporting f to g given a transport T is
⟨T ,D⟩, where ⟨T ,D⟩ = tr(T TD) is the Frobenius dot
product. The p-th Wasserstein distance raised to the power
p between empirical probability measures f and g can be
formulated as

W p
p (f, g) = dW (α,β,D) = min

T∈U(α,β)
⟨T ,D⟩ , (4)

where W p
p (f, g) is a function of α, β and D, and hence can

also be written as dW (α,β,D). We only consider p = 1 in
this paper and omit p hereafter for simplicity.

Computationally, it is quite expensive to obtain the op-
timal solution of (4). Recently, Cuturi [9] has proposed
to add an entropy constraint to the transportation polytope,
which turns out to be an entropy regularized optimal trans-
port problem, resulting in the Sinkhorn distance, i.e.,

dλS(α,β,D) =
⟨
T λ,D

⟩
s.t. T λ = argmin

T∈U(α,β)

⟨T ,D⟩ − 1
λh(T ) , (5)

where h(T ) = −
N∑
i=1

M∑
j=1

tij log tij is the entropy of T . The

optimal T λ that minimizes (5) has a simple form, i.e.,

T λ = diag(κ1)e
−λDdiag(κ2), (6)

where e−λD is the element-wise exponential of the matrix
−λD, κ1 ∈ RN and κ2 ∈ RM are the non-negative left
and right scaling vectors which are unique up to multiply-
ing a factor. κ1 and κ2 can be efficiently determined by
the Sinkhorns fixed point iterations. Therefore, the com-
putational complexity is greatly reduced compared with the
original problem (4).

4. Order-Preserving Wasserstein Distance
Given two sequences X = [x1, · · · ,xN ] and Y =

[y1, · · · ,yM ] with lengths N and M , respectively, the
Wasserstein distance can be applied as a distance measure
between them by viewing the elements in each sequence as
independent samples, i.e.,

dO(X,Y ) = min
T∈U(α,β)

⟨T ,D⟩ (7)

In this case, each sequence is considered as a set of points
sampled independently from a distribution, and hence α =
( 1
N , · · · , 1

N ) and β = ( 1
M , · · · , 1

M ). The Wasserstein dis-
tance measures minimum cost of transporting the distribu-
tion of elements x1, · · · ,xN in X into the distribution of

elements y1, · · · ,yM in Y , but the ordering relationship of
these elements is totally ignored. As shown in Fig. 1(b) and
Fig. 2(b), the first instance of one sequence may be matched
(transported) to the last but one instance of the other se-
quence. Therefore, the Wasserstein distance can only mea-
sure the divergence between the spatial distributions of the
elements, but is incapable of distinguishing the temporal or-
ders of the elements. In cases two sequences only differ in
the order of the elements, neither the Wasserstein distance
nor the Sinkhorn distance can separate them.

To take the inherent temporal information into accoun-
t, it is desired that the sample in one temporal position of
one sequence can only be transported to the elements in the
nearby temporal positions of the other sequence. That is,
elements with relatively far temporal orders in the two se-
quences cannot be matched. We use i

N to measure the rel-
ative temporal order or position of the element xi in the
sequence X . Recall that N is the length of the sequence
X . All the increasing relative temporal positions of all el-
ements in X form an order-prior sequence OX associated
with a sequence X , i.e. ,

OX = [
1

N
,
2

N
, · · · , N − 1

N
, 1].

If elements in one sequence are transported into those el-
ements in the other sequence with similar relative temporal
positions, the transport matrix T should show local homo-
geneous structures. That is, large values appear in the area
near the diagonal of T , while the values in other areas of T
are zero or very small. The inverse difference moment [2]
of the transport matrix T measuring such local homogene-
ity is:

I(T ) =
N∑
i=1

M∑
j=1

tij

( i
N −

j
M )

2
+ 1

, (8)

where I(T ) will have a large value if the large values of the
transport T are mainly distributed along the diagonal. Ide-
ally, maximizing I(T ) w.r.t. T over U(α,β) without any
other constraint will result in a matrix whose non-zero val-
ues only appear in positions where i

N = j
M . To encourage

temporally approached elements to match, the inverse dif-
ference moment I(T ) of the leaned T should be as large as
possible.

A general ideal distribution of the values in T is that the
peaks appear on the diagonal, and the values decrease grad-
ually along the direction perpendicular to the diagonal. This
can be modeled by a two-dimensional distribution, whose
marginal distribution along any line perpendicular to the di-
agonal is a Gaussian distribution centered at the intersection
on the diagonal, i.e.,

pij := P (i, j) =
1

σ
√
2π

e−
ℓ2(i,j)

2σ2 , (9)
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Figure 3. The Prior distribution of the transport matrix.

where ℓ(i, j) is the distance from the position (i, j) to the
diagonal line, i.e.,

ℓ(i, j) =
|i/N − j/M |√
1/N2 + 1/M2

.

We use Equation (9) as the Prior distribution of values in
T , as illustrated in Fig. 3. As can be observed, the farther
one element in one sequence is from the other element in
another sequence in terms of temporal orders, the less likely
it is transported to that element. Since the values in T can
be considered as representing the proportion of transport-
ing the pile in one temporal position of the sequence to the
corresponding temporal position in the other sequence, the
distribution of values in the learned T and the prior distri-
bution should be as similar as possible to encourage smooth
and reasonable assignment or transportation.

To encourage that elements in different sequences with
similar temporal positions be matched and the assignments
of such matches be smooth, we introduce the following fea-
sible set of the transport matrix T by imposing two addi-
tional constraints to the set U(α,β):

Uξ1,ξ2(α,β) = {T ∈ RN×M
+ |T1M = α,

T T1N = β, I(T ) ≥ ξ1,KL(T ||P ) ≤ ξ2}
, (10)

where KL(T ||P ) =
N∑
i=1

M∑
j=1

tij log
tij
pij

is the Kullback-

Leibler (KL) divergence between two matrices. This means
that a transport matrix T is feasible only if its inverse d-
ifference moment is constraint to lie above a pre-defined
threshold, while the KL divergence between T and the prior
distribution P cannot exceed another pre-defined threshold.

Consequently, the elements in two sequences with very
different temporal positions are unlikely to be matched by
T , and the transport proportions of elements in two se-
quences prefer to decrease with the increase of their tem-
poral distance according to a Gaussian function. It can be
easily observed that Uξ1,ξ2(α,β) is a convex set.

We define the Order-Preserving Wasserstein (OPW) Dis-
tance as a distance measure between two sequences X and
Y as

dOξ1,ξ2(X,Y ) = min
T∈Uξ1,ξ2

(α,β)
⟨T ,D⟩ . (11)

From the modeling perspective, this formulation is similar
to maximizing the inverse difference moment of T , min-
imizing the KL-divergence of T and the prior P , while
requiring the transport cost to be constrained. Since only
elements with similar relative positions are preferred to be
matched, the ordering relationships of the two sequences are
preserved when calculating the distance. Moreover, similar
to the entropy-smoothed Wasserstein distance, the addition-
al constraints greatly reduce the computational complexity
of calculating the optimal transport.

We consider the dual order-preserving Wasserstein dis-
tance by introducing two Lagrange multipliers for the in-
verse difference moment constraint and the KL-divergence
constraint, i.e., λ1 > 0 and λ2 > 0, respectively:

dλ1,λ2

O (X,Y ) :=
⟨
T λ1,λ2 ,D

⟩
s.t. T λ1,λ2 = argmin

T∈U(α,β)

⟨T ,D⟩−λ1I(T )+λ2KL(T ||P )

(12)
According to the duality theory, for each pair ξ1, ξ2 in

Equation (11), there exists a corresponding pair λ1 > 0,
λ2 > 0 such that dλ1,λ2

O (X,Y ) = dOξ1,ξ2(X,Y ) is gained
for the pair (X,Y ). The two constraints can be viewed as
regularization terms in (12).

T λ1,λ2 denotes the optimal transport matrix of the con-
straint in Eq. (12), i.e., it optimizes

min
T∈RN×M

+

⟨T ,D⟩ − λ1I(T ) + λ2KL(T ||P )

s.t. T1M = α,T T1N = β
. (13)

Since both the objective and the feasible set in (13) are
convex, the optimal T λ1,λ2 exists and is unique. To obtain
the optimal T λ1,λ2 , we start from the Lagrangian function
of Equation (13)

L(T ,µ,ν) =
N∑
i=1

M∑
j=1

(dijtij − λ1
tij

( i
N − j

M )
2
+1

+ λ2tij log
tij
pij

) + µT (T1M −α) + νT (T T1N − β)

,

(14)
where µ and ν are the dual variables for the two equality
constraints T1M = α and T T1N = β, respectively. The
derivative of L(T ,µ,ν) w.r.t. tij for a couple (i, j) is

∂L(T ,µ,ν)
∂tij

= dij − λ1

( i
N − j

M )
2
+1

+ λ2 log
tij
pij

+ λ2 + µi + νj
. (15)

Setting ∂L(T ,µ,ν)
∂tij

to zero, we get:

tij = pije
− 1

2−
µi
λ2 e

1
λ2

(s
λ1
ij −dij)e−

1
2−

νj
λ2 , (16)



where sλ1
ij = λ1

( i
N − j

M )
2
+1

. We denote K =

[pije
1
λ2

(s
λ1
ij −dij)]ij , then tij = e−

1
2−

µi
λ2 Kije

− 1
2−

νj
λ2 , and

T λ1,λ2 = ediag(−
1
2−

µ
λ2

)Kediag(−
1
2−

ν
λ2

).
All elements of K are strictly positive, since eS is the

element-wise exponential of a matrix S. According to the
Sinkhorn’s theorem (Theorem 1), there exist diagonal ma-
trices diag(κ1) and diag(κ2) with strictly positive diag-
onal elements such that diag(κ1)Kdiag(κ2) belongs to
U(α,β), κ1 ∈ RN and κ2 ∈ RM . diag(κ1)Kdiag(κ2) is
unique and the two diagonal matrices are also unique up to
a scalar factor.

Theorem 1. [26, 7, 8]: For any N ×M matrix A with
all positive elements, there exist diagonal matrices B1 and
B2 such that B1AB2 belongs to U(α,β). B1 and B2

have strictly positive diagonal values, and are unique up to
a positive scalar factor.

The optimal T λ1,λ2 of Eq. (13) in U(α,β) has the same
form with diag(κ1)Kdiag(κ2), and hence is exactly the
unique matrix in U(α,β) that is a rescaled version of K.
κ1 and κ2 are the unique non-negative left and right scaling
vectors up to a scaling factor. Consequently, they can be
efficiently obtained by the Sinkhorn-Knopp iterative matrix
scaling algorithm:

κ1 ← α./Kκ2, (17)

κ2 ← β./(K)Tκ1. (18)

We use only 20 iterations in this paper, because a smal-
l fixed number of iterations for the Sinkhorn’s algorithm
works well as reported in [9, 12]. The complexity of cal-
culating the OPW distance is then O(d′NM), where d′ is
the dimensionality of vectors in sequences X and Y . OPW
avoids the expensive computation of optimization methods
such as interior point method to solve the conventional op-
timal transport problem.

5. Experiments
5.1. Datasets

MSR Sports Action3D dataset [16]. This dataset con-
sists of 402 depth action sequences from 20 sport actions.
Ten subjects perform each action for three times. These se-
quences contain 23,797 frames in total. Following [33, 34],
the dataset is split into training and testing set according to
the subjects, where action sequences performed by half of
the ten subjects are used for training and the rest sequences
are used for testing.

MSR Daily Activity3D dataset [33]. This dataset con-
tains 320 daily activity sequences from 16 activity types.
Generally, ten subjects perform each activity in the living
room in two poses: “sitting on sofa” and “standing”. When

Figure 4. Samples of similar online Chinese characters.

“sitting on sofa” or the subject stands close to the sofa, the
3D joint positions obtained by the skeleton tracker are quite
noisy. Human-object interactions are involved in most ac-
tivities. The dataset is split into training and testing set fol-
lowing the experimental setup in [33, 34].

“Spoken Arabic Digits (SAD)” dataset from the U-
CI Machine Learning Repository [5]. This dataset con-
tains 8,800 vector sequences from ten spoken Arabic digits.
The vectors in sequences are the mel-frequency cepstrum
coefficients (MFCCs) features extracted from speech sig-
nals. Each digit class has 880 sequence samples spoken by
44 male and 44 female Arabic native speakers for ten times.
The dataset is split into training and testing sets. 660 sam-
ples of each class are used for training and the remaining
are used for testing.

Online Chinese character dataset. We select a set
of similar online Chinese characters from a collected
dataset [29]. The set consists of 12 similar characters shar-
ing the same or similar radical. 107 persons write each char-
acter once. Examples and the corresponding GBK codes of
these characters are shown in Fig. 4. We divide the samples
of each character into five subsets to perform five-fold cross
validation.

5.2. Experimental setup

Frame-wide features. For the Action3D dataset and
the Activity3D dataset, each action sample is represented
by a sequence of frame-wide features. We employ the fea-
tures provided by the authors of [34] and [33], respectively.
The features are the relative positions of all 3D joints in the
frame. The dimensionality for the frame-wide features is
192 and 390 for the Action3D dataset and the Activity3D
dataset, respectively. In the SAD dataset, each digit sample
is represented by a sequence of 13-dimensional MFCC fea-
tures. For the similar character dataset, we extract 10 fea-
tures from each stroke of a character sample. The features
include the position, shape, orientation, correlation and cor-
ner points.

Classification methods and evaluation measures. Two
distance-based classifiers, the nearest mean (NM) classifier
and the k nearest neighbor (k-NN) classifier, are adopted
to perform classification. For NM, the distances between
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Figure 5. Performances with the increase of σ by (a) the NM clas-
sifier; (b) the NN classifier.

all the pairwise sequences in each class are calculated. The
sequence with the minimum sum of distances with all the
other sequences in the same class is determined as the mean
of this class. For a test sequence, its distance to the mean
sequence of a class is used as the dissimilarity between it
and the class. The class with the minimum dissimilarity is
determined as the label of the test sequence.

The accuracy and mean average precision (MAP) are
used as evaluation measures. For k-NN, the distance be-
tween the test sequence and all the training sequences are
calculated. The test sequences are classified by a majority
vote of its k nearest neighbors. We consider k = 1, 3, 5, 15
respectively and the accuracy is used as the evaluation mea-
sure. When k = 1, the test sequence is also viewed as a
query to retrieval the training sequences, and the MAP is
calculated.

5.3. Influence of parameters

The proposed OPW distance has three parameters: the
standard deviation σ of the prior distribution controlling the
expected bandwidth of warping, λ1 controlling the weight
of the inverse difference moment regularization, and λ2

controlling the balance of the regularization in terms of the
KL-divergence with prior distribution. We first evaluate the
performances of both the NM and NN classifiers with the
increase of σ on the MSR Action3D dataset. λ1 and λ2

are fixed to 50 and 0.1, respectively. The results are shown
in Fig. 5. We can find that for different evaluation mea-
sures and classifiers, the optimal values of σ are different.
But generally the accuracies decrease when σ > 5, because
large σ means that transports between distant relative tem-
poral positions are allowed and hence the more temporal
information is lost.

We then fix σ to 1 and evaluate the performances of OPW
with different λ1 and λ2. When changing λ2 (λ1), λ1 (λ2)
is fixed to 50 (0.1). The results are shown in Fig. 6. We
can find that OPW is not very sensitive to λ1 when λ1 > 1.
Large λ2 reduces the performances because the prior dis-
tribution is used to bound the width of temporal flexibility
and the learned transport should not be too close to it. The
sudden drops appeared when λ1 > 500 and λ2 ≤ 0.01 are

Distance DTW lDTW nDTW Sinkhorn OPW
Accuracy 71.06 73.63 70.70 66.67 74.36
MAP 50.77 58.05 56.55 51.43 59.10

(a) Results with the NM classifier

Distance DTW lDTW nDTW Sinkhorn OPW
MAP 58.95 56.67 56.52 54.58 58.70
1-NN 81.32 82.78 79.85 78.02 84.25
3-NN 81.32 82.05 79.12 77.66 82.78
5-NN 80.95 79.12 76.92 74.73 80.22
15-NN 82.78 75.82 76.19 69.96 77.29

(b) Results with the NN classifier

Table 1. Results on the MSR Sports Action3D dataset. The best
results among all distance measures are shown in red, and the sec-
ond position results are shown in blue.

Method DTW lDTW nDTW Sinkhorn OPW
Accuracy 40.63 33.75 38.75 37.50 38.75
MAP 33.25 37.47 31.37 32.14 33.35

(a) Results with the NM classifier

Distance DTW lDTW nDTW Sinkhorn OPW
MAP 33.79 28.81 30.56 30.66 34.62
1-NN 58.75 50.00 55.63 54.37 58.13
3-NN 50.62 43.75 47.50 48.13 50.62
5-NN 49.38 50.00 52.50 50.62 53.75
15-NN 43.13 38.75 40.00 41.25 44.37

(b) Results with the NN classifier

Table 2. Results on the MSR Daily Activity3D dataset.

because some entries of K exceed the machine-precision
limit.

5.4. Comparison with different distance measures

We compare the performances of the NM and NN clas-
sifiers by using different distance measures between se-
quences. The results on the four datasets are shown in Tab. 1
to Tab. 4, respectively. lDTW and nDTW are variations of
DTW normalized by the length of the test sequence and the
matching steps, respectively. For the Sinkhorn distance and
the proposed OPW distance, the results are reported using
the optimal parameters.

We can find that the proposed OPW distance outperform-
s the most widely adopted DTW distance and its variants, as
well as the Sinkhorn distance, on most datasets with differ-
ent classifiers and evaluation measures. In cases where the
performances of OPW are not the best, the best results are
obtained by different distances and OPW achieves the sec-
ond best results that are very close to the best ones.

On three out of four datasets, OPW achieves the highest
accuracies, and MAPs among all the classifiers. In partic-
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Figure 6. Performances with the increase of (a) λ1 by the NM classifier; (b) λ1 by the NN classifier; (c) λ2 by the NM classifier; (d) λ2 by
the NN classifier.

Method DTW lDTW nDTW Sinkhorn OPW
Accuracy 45.01

(2.21)
46.10
(3.92)

41.31
(3.40)

34.97
(1.84)

57.75
(2.62)

MAP 40.02
(1.75)

40.50
(2.76)

35.21
(2.07)

28.76
(1.12)

47.40
(2.64)

(a) Results with the NM classifier

Distance DTW lDTW nDTW Sinkhorn OPW
MAP 28.27

(0.30)
27.09
(0.40)

23.87
(0.34)

19.41
(0.32)

32.12
(1.14)

1-NN 62.44
(3.03)

66.08
(2.31)

60.31
(1.97)

57.54
(3.34)

72.25
(3.00)

3-NN 59.95
(2.40)

69.78
(1.84)

63.02
(1.89)

57.97
(1.62)

73.62
(2.01)

5-NN 62.36
(2.18)

69.98
(2.16)

64.39
(2.31)

60.53
(2.04)

76.99
(2.01)

15-NN 63.77
(1.76)

72.19
(4.33)

64.24
(2.77)

61.29
(2.49)

78.38
(2.49)

(b) Results with the NN classifier

Table 3. Results on similar online Chinese character recognition.
Standard deviations are shown in brackets.

ular, OPW outperforms the sub-optimal results by a mar-
gin of 7% on accuracy and MAP with the NM classifier
on similar character recognition and 5% on MAPs with the
NM and 1-NN classifiers on the SAD dataset. Generally,
the Sinkhorn distance leads to worse results than the DTW
distance, while the proposed OPW achieves much better re-
sults. This means that directly applying the OT-based dis-
tances to sequences is not favorable and the temporal regu-
larizations have played an important role in employing the
temporal information.

6. Conclusions
In this paper, we have presented order-preserving

Wasserstein distance, a new distance measure between se-
quences. OPW distance adapts the well-known optimal
transport for sequence data, where the distribution of in-
stances in one sequence is transported to match the distribu-
tion of another sequence with the minimal cost. The learned

Method DTW lDTW nDTW Sinkhorn OPW
Accuracy 82.55 80.18 76.27 77.00 87.27
MAP 73.23 76.29 67.75 65.11 82.23

(a) Results with the NM classifier

Distance DTW lDTW nDTW Sinkhorn OPW
MAP 56.58 56.03 48.47 43.27 62.71
1-NN 96.36 96.73 95.05 87.95 96.68
3-NN 96.91 96.82 95.73 89.05 97.45
5-NN 97.23 96.73 96.09 89.23 97.14
15-NN 97.36 96.50 95.91 90.73 97.41

(b) Results with the NN classifier

Table 4. Results on the SAD dataset.

transport also preserves the temporal orders of instances
such that each instance in one sequence should transport
to instances in the other sequence with similar relative tem-
poral positions. To this end, two novel regularization terms,
i.e., the inverse difference moment regularization and the K-
L divergence with prior distribution regularization, are im-
pose to the transport to encourage transports to nearby in-
stances and punish alignments between distant instances.
We show that OPW distance can be efficiently calculated
by matrix scaling. Experiments on four different dataset-
s demonstrate that OPW distance is able to achieve flexi-
ble order-preserving alignments and hence tackle periodic
patterns with arbitrary starting points and local temporal re-
verse or distortion problems.
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