
Active Visual Recognition with Expertise Estimation in Crowdsourcing

Chengjiang Long, Gang Hua
Stevens Institute of Technology

Hoboken, NJ 07030
{clong, ghua}@stevens.edu

Ashish Kapoor
Microsoft Research

Redmond, WA 98052
{akapoor}@microsoft.com

Abstract

We present a noise resilient probabilistic model for ac-
tive learning of a Gaussian process classifier from crowds,
i.e., a set of noisy labelers. It explicitly models both the
overall label noises and the expertise level of each individ-
ual labeler in two levels of flip models. Expectation propa-
gation is adopted for efficient approximate Bayesian infer-
ence of our probabilistic model for classification, based on
which, a generalized EM algorithm is derived to estimate
both the global label noise and the expertise of each indi-
vidual labeler. The probabilistic nature of our model im-
mediately allows the adoption of the prediction entropy and
estimated expertise for active selection of data sample to be
labeled, and active selection of high quality labelers to la-
bel the data, respectively. We apply the proposed model for
three visual recognition tasks, i.e, object category recogni-
tion, gender recognition, and multi-modal activity recogni-
tion, on three datasets with real crowd-sourced labels from
Amazon Mechanical Turk. The experiments clearly demon-
strated the efficacy of the proposed model.

1. Introduction
As research on visual recognition evolving more towards

an experimental science, partly due to the success of the
introduction of machine learning approach to computer vi-
sion [21, 13, 14], collecting labeled visual datasets at large
scale from crowd-sourcing tools such as Amazon Mechani-
cal Turk has become a common practice [6, 23]. Although
it is cheap to obtain large quantity of labels through crowd-
sourcing, it has been well known that the collected labels
could be very noisy. So it is desirable to model the ex-
pertise level of the labelers to ensure the quality of the la-
bels [6, 23, 1]. The higher the expertise level a labeler is at,
the lower the label noises he/she will produce.

Previous works for modeling the labelers’ expertise
mainly adopted two approaches. The first approach at-
tempts to evaluate the labelers by adopting a pre-labeled
gold standard dataset [1]. When a labeler is constantly gen-
erating contradicting labels on data samples from the gold
standard dataset, all labels from that labeler may be dis-
carded as he/she is highly likely to be an irresponsible one.
The second approach addresses this issue through evaluat-

ing the labels by collecting multiple labels for each data
sample [6, 23]. Then online or postmortem majority vot-
ing, or majority model consistency check is conducted to
obtain the more likely ground-truth label of the data sam-
ple. The basic assumption is that majority of the labelers
are behaving in good faith.

The first approach is able to evaluate the labelers online,
which is desirable. But it needs to pre-label a set of data
to serve as the gold standard, which may be an obstacle by
itself. The second approach focuses on the label noise. It
does not explicitly evaluate the labelers, although it may be
extended to do so by online tracking how often a labeler
is contradicting with the majority. Notwithstanding their
demonstrated success, these two approaches are rather Ad
Hoc. There lacks a principled approach to jointly model
the global noise level of the labels and the expertise level
of each individual labeler, in the absence of gold standard
labels, which is what we want to achieve in this paper.

We present a Bayesian model (Figure 1), which explic-
itly models the global noise level of the labels and the ex-
pertise level of each individual labeler from crowds (i.e.,
a group of noisy labelers). These two different statistics
are modeled hierarchically with two levels of flip mod-
els [16]. Expectation propagation [16] is used for approxi-
mate Bayesian inference of the posterior of the latent clas-
sification function. A generalized Expectation Maximiza-
tion (GEM) algorithm is conducted to estimate both quanti-
ties. The resulting classifier is more resilient to label noises,
adapting to the expertise of labelers.

Another improvement that can be made to current
crowdsourcing labeling system such as Amazon Mechan-
ical Turk (AMT) is to make it actively guide the labelers
for more efficient labeling. The proposed Bayesian model
enables not only active selection of data samples to be la-
beled, but also active selection of quality labelers. These
are enabled by the probabilistic nature of our model and the
explicit modeling of both global label noise and expertise of
each individual labeler, thereby allowing entropy based un-
certainty measure to be readily adopted for these purposes.

Several aspects distinguish our work from previous ac-
tive learning based labeling [23, 2, 11, 15, 9]: first of all,
our work deals with active learning with multiple labelers, a
topic which has not been sufficiently explored before. Sec-
ondly, we do not assume that the labels provided by the la-
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belers are absolutely correct. In other words, the labeler
may label an example incorrectly. Most previous work on
active learning has assumed that the labels provided by the
human oracle is noise free. Thirdly, our model allows on-
line evaluation of the quality of the labelers without relying
on any additional pre-labeled gold standard data. Hence we
can select higher quality labelers and reduce the noise level
of the labels we collected.

The main contributions of this paper are: (1) a Bayesian
probabilistic formulation to learn a Gaussian process clas-
sifiers from multiple noisy labels, which models both the
global label noise and expertise of each individual labeler;
and (2) an active classifier learning system which deter-
mines which users to label which unlabeled examples. We
apply our proposed model on datasets with real noisy la-
bels obtained from Amazaon Mechanical Turk on three vi-
sual recognition tasks, i.e., object category recognition, gen-
der recognition, and multi-modal activity recognition. The
results clearly demonstrated the efficacy of our proposed
model.

2. Related work
Related works can be grouped into three categories in-

cluding noise resilient Gaussian process classifiers [26,
10, 12], approximate Bayesian inference methods [17, 10,
18, 16], and active learning algorithms embracing crowd-
sourced labels [8, 25, 1, 23].

In the case of Gaussian process classifier, the TAP style
mean field approximation [18] is equivalent to the more
general Expectation Propagation (EP) for approximate in-
ference, which is firstly proposed by Minka [16]. A noise
resilient likelihood model, namely flip noise model, is in-
troduced in [16] to better handle label noises in Gaussian
process classifier. More recently, Kim and Ghahramani [12]
exploited the flip noise model to explicitly handle outlier la-
bels in Gaussian process classifier. An EM algorithm built
on top of EP is proposed to estimate the label noise levels
online. None of these methods ever considers the case when
a data sample has multiple copies of noisy labels, which is
the focus of our proposed approach. Several previous works
have explored active learning from noisy crowd-sourced la-
bels [1, 23] in different domains, where the two aforemen-
tioned approaches are exploited to handle label noise.

To better mitigate label noises online in the absence
of gold standard labels, Donmez et al. [8, 7] have ex-
plored confidence interval based estimation and sequential
Bayesian estimation method to evaluate the label quality of
the annotators in both stationary and non-stationary cases.
Zhao et al. [29] proposed an incremental relabeling mech-
anism which employed active learning to not only select
the unlabeled data to be labeled by the crowds, but also se-
lect already labeled data samples to be relabeled until suf-
ficient confidence is built. Raykar et al. [20, 19] proposed
a probabilistic model, which assumes independence of the
annotator judgement given the true label, and alternatively
conducts model learning and performance evaluation of the
multiple annotators.

Dekel and Shamir [4] adapted the formulation of sup-

port vector machines (SVMs) to identify low quality or ma-
licious annotators, which assumes that each annotator is ei-
ther good or bad. Later, they [5] proposed a method for
pruning low-quality lablers by using the model trained from
the entire labeled dataset from all labelers as ground truth.
Chen et al. [3] proposed to identify good annotators by
spectral clustering in the worker space. The assumption is
that good labelers will behave similarly. Yan et al. [27, 28]
presented a Bayesian model and adopted a logistic regres-
sion function to model the labeler’s quality. These works
build insights on how to deal with label noises and evaluate
labeler quality. They lack explicit joint modeling of both the
label noises and the lablers’ quality. Our proposed approach
models both in a unified way.

For modeling annotators’ quality for image labeling
from the crowds, the most relevant works to our research is
Welinder and Perona [25] and Welinder et al. [24]. In both
works, a parameter vector of each annotator which repre-
sents the annotator’s expertise, a feature (parameter) vector
associated with each image which encodes each annotator’s
visual response to the image, and a linear classifier operat-
ing on the parameter vector associated with each image, are
all inferred from existing labels provided by the annotators
through a Bayesian model.

We shall emphasize that in these two pieces of work pro-
posed by Welinder and Perona [25] and Welinder et al. [24],
no visual features are directly extracted from the set of im-
ages and for one image, at least one label is needed to be
able to infer the parameter vector associated with it. Hence
the classifier induced from their models can not be applied
directly to an unlabeled sample, because there is no fea-
ture vector to operate on. In this sense, their models pro-
vided a more principled way for active data re-labeling. In
contrast, our proposed model actively induces a classifier
which directly operates on visual features that directly ex-
tracted from images, which models the labelers’ quality in
a principled way to facilitate active selection of annotators
for providing better quality labels.

3. Formulation, inference, and learning
Given a set of N data points X = {x1,x2, ...,xN},

where xi ∈ RD, each of which may be labeled by M la-
belers. We denote si to be the latent random variable with
a Gaussian process prior. The true label of xi is denoted as
yi ∈ {−1, 1}, which is hidden. The observed label of xi

from labeler j is denoted as tij ∈ {−1, 1}, which could be
noisy, meaning the tij may not be consistent with the hid-
den true label yi. We denote ti = {tij}Mj=1 as the set of
labels from the M labelers for xi. For notation simplifica-
tion, we denote S = {s1, s2, ..., sN}, Y = {y1, y2, ..., yN}
and T = {t1, t2, . . . , tN}. Our objective is to build a prob-
abilistic model to robustly infer yi for each xi.

3.1. Probabilistic Model
The proposed probabilistic model is illustrated in the

graphical model in Figure 1. The conditional joint proba-



Figure 1: Graphical model of the proposed Gaussian process clas-
sifier, with multiple noisy labels from the crowds.

bility of this probabilistic model is defined as

p(T,Y,S|X, ~ε) ∝ 1

Z
p(S|X)

∏
i

p(yi|si, ξg)
∏
i,j

p(tij |yi, εj),

(1)
where ~ε =

{
{εj}Mj=1, ξg

}
, ξg is the global label noise mea-

sure, and εj is the label quality measure for labeler j, and Z
is the partition function.

In our model, p(S|X) is a Gaussian process prior [26] to
ensure that similar data samples to have similar prediction
scores. Formally, it is defined as

p(S|X) ∼ N(S|0,K), (2)

where K = [k(xi,xj ]
N
i,j=1 is a kernel matrix defined over

the set of all N data samples. Any valid kernel function,
which measures the similarity between two data samples,
can be used here.

The conditional likelihood probability p(yi|si) is defined
as a flip model [16], i.e.,

p(yi|si, ξg) = ξgΘ(yisi) + (1− ξg)Θ(−yisi), (3)

where Θ(ρ) = 1 if ρ > 0, and Θ(ρ) = 0 otherwise. In other
words, the a posteriori estimation of yi takes the sign of the
predicted soft label si with probability ξg . This treatment
make the GPC to be resilient to label noise and outliers [12].

The conditional likelihood probability p(tij |yi, εj) is
also modeled as a flipping noise model, i.e.,

p(tij |yi, εj) = εjΘ(yitij) + (1− εj)Θ(−yitij). (4)

Intuitively, with probability 1 − εj , tij will be a flipped
version of yi. Therefore, the larger εj is, the higher the
probability that tij will agree with the true label yi, and
vice versa. Hence, εj naturally represents the expertise or
quality of the labels induced by labeler j. We note here that
unlike in [16], we parameterize this model based on label
quality, which is one minus the label noise.

3.2. Inference
As a matter of fact, this two-level flip model can be con-

veniently collapsed by integrating yi out to obtain the joint
probability

p(ti|si, ~ε) = p(yi = +1|si, ξg)
∏

j p(tij |yi = +1, εj)

+p(yi = −1|si, ξg)
∏

j p(tij |yi = −1, εj),(5)

We can rewrite the joint probability in Equation 1 as

p(T,S|X, ~ε) = p(S|X)
∏
i

p(ti|si, ~ε), (6)

This collapsed joint probability will help us to more conve-
niently derive the EP inference algorithm.

For the proposed Bayesian framework, we assume
that we are given a set of labeled data samples XL =
{x1, ...,xL}, and the set of labels are denoted as TL =
{tij |1 ≤ i ≤ N, 1 ≤ j ≤ M}. We denote DL =
{XL,TL}, S = {SL, su}, and X = {XL,xu}, where xu

is an unlabeled data sample. To predict the label yu of a xu,
we need to solve the following Bayesian inference problem,
i.e.,

p(yu|xu,DL) =

∫
S

p(yu|su)p(S|DL,xu)dS

=

∫
su

p(yu|su)

∫
SL

p(S|DL,xu)dSLdsu (7)

where

p(S|DL,xu) ∝ p(S|X)
∏

si∈SL

p(ti|si, ~ε). (8)

The integral in Equation 7 is intractable as neither
p(S|DL,xu) nor p(yu|su) can be integrated in close form.
We resort to Expectation Propagation [16] to obtain an ap-
proximate integral by approximating p(S|DL,xu) to be a
Gaussian, i.e.,

Q(S) = p(S|X)
∏
i

F̃i(si) ∼ N (S|m,Σ), , (9)

where m = [m1,m2, . . . ,mL] and Σ = [σij ]
N
i,j=1 are the

mean vector and covariance matrix of the Gaussian distribu-
tion Q(S) each F̃i(si) is a Gaussian distribution with mean
m̃i, variance vi, and normalization constant Ai, i.e.,

F̃i(si) = Ai exp (− 1

2vi
(si − m̃i)

2). (10)

which approximates the joint likelihood of the set of all la-
bels obtained for xi, i.e.,

F̃i(si) ≈ p(ti|si, ~ε). (11)

Since the prior p(S|X) is a Gaussian by definition, hence
Q(S) will also be a Gaussian distribution. Note this ap-
proximation is in contrast to previous work using EP for
inference in GPC in the sense that the approximation is per-
formed over the joint likelihood of a set of labels on a single
data. Most previous work only considered the case of a sin-
gle label for each data. Instead of solving for each F̃i(si)
independently, we use EP [16] to obtain a better overall ap-
proximation. The exact steps of the inference algorithm are
omitted due to space limit.

EP obtains a Gaussian approximation Q(S) to the pos-
terior distribution p(S|DL,xu). Hence the integral over



SL in Equation 7 can also be approximated by a Gaus-
sian distribution over su, i.e., N (su|mu, vu), where mu

and vu can be obtained in closed form. Denote m̃ =
[m̃1, m̃2, . . . , m̃L]T be the concatenation of the mean value
of each F̃i(si), we have

mu = kT
u (K + Λ)−1m̃ (12)

vu = k(xu,xu)− kT
u (K + Λ)−1ku (13)

where ku = [k(xu,x1), k(xu,x2), . . . , k(xu,xN )]T . We
immediately have that the whole integral over all S in Equa-
tion 7 can be approximated as

p(yu|xu,DL)

.
= (2ξg − 1)Φ(

yukT
u (K + Λ)−1m̃√

k(xu,xu)− kT
u (K + Λ)−1ku

)

+1− ξg (14)

where Φ(·) is the Probit function. We subsequently predict
the label yu of xu based on Equation 14.

3.3. Learning ~ε with Expectation Maximization

To online estimate the quality of both the labels and
labelers, we need to online estimate the parameters ~ε ={
ξg, {εj}Mj=1

}
, which represent the overall label quality and

label quality of each labeler. We further develop a general-
ized Expectation-Maximization algorithm for estimating it.
Note ~λ is a function of ~ε, so we abuse the notation a bit and
use them interchangeably. We start by building the lower
bound F of the log likelihood, i.e.,

log p(TL,SL|XL, ~ε)

≥
∫
SL

Q(SL) log
p(TL,SL|XL, ~ε)

Q(SL)

= C +

L∑
i=1

∫
si

q(si) log p(ti|si, ~ε)dsi. (15)

Then the following iterative steps form the EM algorithm

1. E-Step: Given the current parameter ~εp, conduct the
EP inference to obtain an approximate inference of
Q(SL) ∼ p(SL|XL,TL).

2. M-Step: Maximize the lower bound of
log p(TL,SL|XL, ~ε) in Equation 15 over ~ε to
obtain a new parameter ~ε. ~εp ← ~ε, goto the E-Step
and iterate until convergence.

For the M-Step, closed form solution of ξg and εj is not
tractable. Hence we resort to the L-BFGS-B algorithm [30]
to find a numerical estimation of them to maximize the
lower bound F by gradient ascent, which is guaranteed to
obtain a local optimal solution.

4. Bayesian Active Learning
For pool based active learning, we assume that we are

given a pool of both labeled and unlabeled data samples
X = {XL,XU}, and TL is the label set for XL from M
labelers. The proposed model conveniently allows for both
active selection of unlabeled data samples to be labeled, and
also active selection of higher quality labelers.

For active sample selection, a criterion that
can readily be adopted is the entropy H(yu) =
−
∑

yu∈{1,−1} p(yu|xu,DL) log p(yu|xu,DL) of the
predicted label yu on unlabeled data xu. We select the most
uncertain unlabeled example to be labeled, i.e.,

x∗u = arg max
xu∈XU

H(yu), (16)

where p(yu|xu,DL) can be obtained using the EP algo-
rithm introduced in Section 3.2.

Note εj in our model directly models the labeler j’s qual-
ity. It can be regarded as the probability that labeler j would
label the data correctly. Therefore, the higher εj is, the bet-
ter quality the labeler has. In our active learning process,
we can naturally select the top K < M labelers with the
top K εj to label a selected data sample, where εj is esti-
mated by the EP-GEM algorithm presented in Section 3.3.
The joint active selection of both labelers and data samples
greatly facilitates to obtain higher quality labels.

Another active learning strategy is to only actively select
the data sample to be labeled by all M labelers. Our model
indeed can benefit from the multiple labels, even though
there may be noises. We also compare this strategy with
online majority voting in our experiments.

5. Experiments
Our experiments are conducted on three datasets with

real crowd-sourced labels. In our experiments, we use RBF
kernel unless otherwise specified.

5.1. Datasets
The first dataset is composed of 3 classes of images from

the ImageNet grand challenge [6], which includes 2 cate-
gory of dogs, i.e., “Yorkshire terrier”, “English setter” plus
the “Meerkat, meerkat” category. These three classes of
images are among the top 10 in the ImageNet grand chal-
lenge in terms of number of labeled examples, which have
3047, 2426 and 2341 labeled images, respectively. We re-
push these images back to Amazon Mechanical Turk and
obtained 7 copies of labels for each image. The percent-
ages of the labels which are correct (i.e., agreeing with the
ground-truth labels from ImageNet) are 97.87%, 96.83%
and 99.27%, respectively. The features we used to repre-
sent each image is the local coodinate coding (LCC) [14]
on densely extracted HoG features with 4096 codewords.
The LCC features is pooled in 10 spatial cells, resulting a
40960 dimensional feature.

The second dataset we take experiments on is a subset
of the CMU multi-modal action category dataset (CMU-
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Figure 2: Recognition performance on the “Meerkat, meerkat” class with different number of bad labelers.

MMAC) [22], where crowd-sourced labels have been ob-
tained by Zhao et al. [29]. In total there are 2682 labeled
video clips, each has 7 copies of labels from Amazon Me-
chanical Turk. The action labels include: 1. close; 2. crack;
3. open; 4. pour; 5. put; 6. read; 7. spray; 8. stir;
9. switch on; 10. take; 11. twist off; 12. twist on; 13.
walk and 14. others. The corresponding number of clips
for each action are: 7, 54, 711, 112, 453, 116, 43, 94, 654,
103, 290, 11, 12, and 22, respectively. Since many of the
classes have limited labeled clips, and also considering that
the raw label accuracy of action 3 and action 5 is less than
50%, which fail all the classifiers we tried. We choose to
work on the classification problem of action 9 only, which
has sufficient number of labeled clips and its label accuracy
is 75.56% . Since the CMU-MMAC dataset incorporates
multiple modality, instead of using visual features extracted
from video frames, we use the feature extracted from the
IMU modality provided by Zhao et al. [29]. The feature di-
mension is 180. We refer the reader to [29] for more details
on how the features are extracted.

The last dataset for our experiment is a face gender
dataset, where we try to learn a gender classifier from facial
features. We collected 5 copies of gender labels for 9441
face images. The face images are all 64× 64. We extract a
5408 dimensional features from each face image. This fea-
ture extractor is a convolutional neural network trained for
gender recognition with a separate small set of labeled gen-
der face images. The feature is the output of the last layer of
the convolutional neural network. We will share the features
of this data upon publication of our paper.

5.2. Experiments on ImageNet Dataset

Effectiveness of Labeler Selection: The simulation ex-
periment we conducted is on the ImageNet dataset. To
demonstrate the effectiveness of our model to avoid low
quality labelers, we use the class “Meerkat, meerkat” as an
example. We take 1000 images as positive samples from the
class “Meerkat, meerkat” and 1000 images from the other
two dog classes to serve as the hold-out testing set. The
rest of the images in “Meerkat, meerkat” and an equal num-
ber of images from the other two classes are put together
to form the active learning pool. We simulate the case that
there are 2, 3, 4 bad labelers, who would randomly assign
a label to the sample, so there is 50% chance that the label
from them will be erroneous. For good labelers, we used
the noisy labels obtained from Amazon Mechanical Turk.
Therefore, We run our proposed active learning algorithm
for both active selection of data samples and labelers. 3 la-
belers with higher estimated label quality εj are selected to
provide the labels for the actively selected samples. A lin-
ear kernel function is adopted due to the LCC features we
used.

We name our algorithm as JGPC-ASAL, stands for joint
learning GPC with active selection of both samples and la-
belers (we call it joint learning in the sense that the multiple
labels of a single example is jointly considered). We com-
pare with a combination of other learning strategies with our
model, such as active selection of samples but random se-
lection of labelers, random selection of samples and active
selection of labelers, and random selection of both samples
and labelers. We call these three algorithms JGPC-ASRL,



JGPC-RSAL and JGPC-RSRL, respectively. For all these
online learning algorithms based on JGPC, we select 3 la-
belers to provide the label using the corresponding criterion
for labeler selection.

One algorithm we compare against is an active learning
GP classifier with the global flip noise observation model
similar to the model in [12]. For this method, at each round,
we use the prediction entropy to select the next sample to
be labeled and majority voting is performed to obtain a
single label from all 7 copies of labels. We name it as
majority vote active learning GPC with flip noise model,
or in short GPC-MVAS-F. The corresponding algorithm
performing random sample selection using majority voted
label, is named as GPC-MVRS-F. Another algorithm we
compare against is based on the active learning GP classifier
proposed by Kapoor et al. [2], where a Gaussian observa-
tion model is adopted, and a confidence criterion normal-
ized by the variance of the posterior prediction is adopted
for active learning. Again, majority voting is performed at
each active learning step to obtain a single label from all
7 copies of noisy labels. We name this algorithm as GPC-
MVAS-K, and its random sample selection version is named
GPC-MVRS-K. Since there are no labeler selection mech-
anism, we simply gather majority voted labels from all 7
labelers.

Figure 2 presents the recognition accuracy evolving with
increasing number of labeled examples for all the compet-
ing methods with 2 (Figure 2a and 2b), 3 (Figure 2c and 2d)
,and 4 (Figure 2e and 2f) bad labelers. We have the follow-
ing observations: (1)overall, in all cases, the recognition
accuracy of the proposed JGPC-ASAL is constantly ranked
on the top, in both the active learning pool and the hold-
out testing set, which is not affected by the number of bad
labelers due to the active selection of higher quality label-
ers. (2). The JGPC-ASRL algorithm achieves more or less
the same accuracy than the JGPC-ASAL when there is only
2 bad labelers, and degraded with the increased number of
bad labelers. Suggesting that when the labels are less noisy,
active selection of samples are more important than active
selection of labelers, which intuitively makes sense as the
label quality is high. (3). The GPC-MVAS-F algorithm
outperformed GPC-MVAS-K, which revalidated the advan-
tage of the flip noise model based observation model over
a simple Gaussian observation model in a Gaussian process
classifier. (4). In all cases for all algorithms, the active sam-
ple selection strategy always outperforms its random sam-
ple selection counterpart, which suggest that the proposed
active learning criterion is robust against label noises.

Figure 3 visualizes the top three labelers selected at
each active learning step when running the proposed JGPC-
ASAL algorithm on the “Meerkat, meerkat” class with 4
bad labelers (labeler 4, 5, 6, and 7 are bad labelers). The
red, blue, and green color circles represents the top three la-
belers selected based on the estimated labeler quality mea-
sure at each active learning step. As we can clearly observe,
at the beginning, the users selected are more or less uni-
form across the 7 labelers. Then with the progression of
the active learning process, the three good labelers (labeler

1,2,and 3) got constantly selected. This demonstrated the
efficacy of the proposed model for online modeling of the
labelers’ quality.
Labelers with different expertise: To better understand
the behavior of our algorithm, we run two sets of exper-
iments with simulated label noises from the ground-truth
labels on the 3 categories of ImageNet dataset. We use
the “Meerkat, meerkat” as the positive class and the other
two dog classes as the negative class. In the first exper-
iment, we simulated the case that each labeler produces
10%, 15%, 20%, 25%, 30%, 35% and 40% erroneous la-
bels, respectively. In the second experiment, we increase
the label noise level to have each labeler to produce 15%,
20%, 25%, 30%, 35%, 40%, and 45% erroneous labels, re-
spectively. We also impose a naive majority voting con-
sensus based labeler selection scheme to the GPC-MVAS-F
and GPC-MVRS-F algorithm. For each labeler, we record
online his rate of consistent labels with the corresponding
majority voted labels. Intuitively, the larger this rate, the
better the labeler’s quality. We call the GPC-MVAS-F and
GPC-MVRS-F algorithm equipped with this simple active
labeler selection scheme as GPC-MVASAL-F and GPC-
MVRSAL-F, respectively. To validate its efficacy, we also
compare against its corresponding random labeler selection
version, namely GPC-MVASRL-F and GPC-MVRSRL-F.
Again, at each step of the online learning process, we select
3 labelers to provide the labels.

Figure 4 presents the results of the two experiments. Our
observations are: (1) the proposed JGPC-ASAL algorithm
achieved slightly better accuracy than the GPC-MVASAL-F
algorithm in the first experiment, and much better accuracy
in the second experiment, which indicates that our proposed
labeler selection criterion is more robust to label noises than
the naive majority voting consensus based labeler selection
criterion. (2) The naive majority voting consensus based la-
beler selection criterion is also effective, as it achieved bet-
ter accuracy than its random labeler selection counterpart.
Experiments with real crowd-sourced labels: We fur-
ther run experiments with all real crowd-sourced labels on
the 3 classes of images. For each classes, we randomly sam-
ple 1000 examples from it and another 1000 examples from
the other two classes to serve as the hold-out testing set.
The rest of the examples in the target class and an equal
number of examples from the other two classes are put in
the active learning pool. Since the 7 copies of labels we
collected from Amazon Mechanical Turk do not really en-
tail labels from bad labelers, we found that active selection
of higher quality labelers does not really improve recogni-
tion accuracy much. Hence in this experiments we only do
active sample selection, and assume all the 7 labelers will
all label the selected example. We call this algorithm un-
der our proposed model to be JGPC-AS. We argue that our
joint treatment of multiple labels in GPC in general is su-
perior than the majority voting strategy (GPC-MVAS-F and
GPC-MVAS-K), as manifested by the results shown in Fig-
ure 5. We also compare against two versions of the active
learning algorithm proposed by Yan et al. [28, 27], namely
ML-Bernoulli-AS and ML-Gaussian-AS, respectively.
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Figure 4: Experiments with labelers with different level of label noises on the ImageNet dataset:
(a)&(b) Each labeler is simulated with 10%, 15%, 20%, 25%, 30%, 35% and 40%, respectively;
(c)&(d) Each labeler is simulated with 15%, 20%, 25%, 30%, 35%, 40%, and 45%, respectively.

The figure also presents the results of these compet-
ing GPC algorithms with random sample selection strat-
egy, namely JGPC-RS, GPC-MVRS-F, and GPC-MVRS-
K, respectively. The curves plotted in Figure 5 are averaged
over the three classes over multiple runs with different ini-
tial labels to counter the statistic differences. As we can
clearly observe, the proposed JGPC-AS is on par with GPC-
MVAS-F and outperforms the GPC-MVAS-K algorithm in
this dataset. Again, active sample selection always achieves
better performance than random sample selection. The ML-
Bernoulli-AS and ML-Gaussian-AS performed poorly on
this dataset with real crowdsourced labels, which is not sur-
prising as it induce a linear classifier.

5.3. Experiments on CMU-MMAC Dataset
For experiment on CMU-MMAC dataset, we take 250

clips of action 9 and 250 clips of the other actions to form
the hold-out testing set. The rest 404 clips of action 9 and
the same number of clips from the other actions are used
as the active learning pool. As we can clearly observe in
Figure 6, our proposed JGPC-AS algorithm consistently
outperforms the GPC-MVAS-F and GPC-MVAS-K algo-
rithms. This further validated the efficacy of our model.

5.4. Experiments on Gender Face Dataset
We hold out 2000 face images, for which all 5 copies of

labels are in consensus, for testing purpose. The rest of the
face images with different percentage of label inconsistency
are used as the active learning pool. As shown in Figure 7,

the proposed JGPC-AS algorithm again showed superior
recognition accuracy when compared with the GPC-MVAS-
F and GPC-MVAS-K algorithms, in both the active learning
pool and the hold-out testing set. It is also obvious that al-
gorithms performing active learning always achieved bet-
ter performance when compared with their random learning
counterparts.

6. Conclusion
In this paper, we present a hierarchical Bayesian model

to learn a Gaussian process classifier from crowd-sourced
labels by jointly considering multiple labels instead of tak-
ing the majority voting. Our two-level flip model enables
us to design principled active learning strategy to not only
select data sample, but also select quality labelers. Our
experiments on three visual recognition datasets with real-
crowdsourced labels clearly demonstrated that the active
selection of labelers is beneficial when there are a lot of
careless labelers. Our joint treatment of multiple labels for
each data sample is also proven to be superior to the on-
line majority voting scheme. The Gaussian process clas-
sifier learned from our model consistently outperforms the
one learnt using majority voting strategy. Our future work
will further explore how to design an active learning ma-
chine to jointly select both the user and sample in a single
criterion.
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