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Abstract

We address the problem of dense visual-semantic embed-
ding that maps not only full sentences and whole images
but also phrases within sentences and salient regions within

images into a multimodal embedding space. Such dense
embeddings, when applied to the task of image captioning,
enable us to produce several region-oriented and detailed
phrases rather than just an overview sentence to describe
an image. Specifically, we present a hierarchical structured
recurrent neural network (RNN), namely Hierarchical Mul-
timodal LSTM (HM-LSTM). Compared with chain struc-
tured RNN, our proposed model exploits the hierarchical re-

lations between sentences and phrases, and between whole
images and image regions, to jointly establish their repre-
sentations. Without the need of any supervised labels, our
proposed model automatically learns the fine-grained cor-
respondences between phrases and image regions towards
the dense embedding. Extensive experiments on several
datasets validate the efficacy of our method, which com-
pares favorably with the state-of-the-art methods.

1. Introduction
Visual-semantic embedding is to map both images and

their captions into a common space, so that we can re-

trieve/rank captions given images or retrieve/rank images

given captions. Particularly, it has been broadly used for

image captioning which aims to describe images with sen-

tences. Recently, the advances in deep learning have made

significant progress on visual-semantic embedding. Gener-

ally, image representations are produced by Convolutional

Neural Networks (CNN), and caption representations are

produced by Recurrent Neural Networks (RNN). A rank-

ing loss is subsequently optimized to make the correspond-

ing representations as close as possible in the embedding

space [11] [6] [29] [15].

Most previous methods only map full sentences and

whole images into an embedding space. As a result, they are

only able to describe an image with a general and overview

sentence, i.e., coarsely and generally depict the image con-

•‘A man is standing in front of towers.’

•‘a man with a blue hat and sunglasses’
•‘a girl in red jacket and black dress’
•‘several white towers with golden spire’

Figure 1. Region-oriented, detailed, and phrase-level image cap-

tioning. It is desired to produce several region-oriented and de-

tailed phrases rather than just an overview sentence for describing

an image.

tent. However, different users may be interested in distinct

objects/regions in an image, and hence it is desired to indi-

vidually depict them with specific descriptions. As shown

in Fig. 1, some users may be interested in ‘the man with
sunglasses’ while others may be interested in ‘the girl in red
jacket’. Therefore, it is desired to produce several region-

oriented and detailed phrases (e.g., ‘a man with a blue hat

and sunglasses’) rather than just an overview sentence (e.g.,
‘A man is standing in front of towers’) to describe an image.

An intuitive solution is to map not only the full sentences

but also the phrases within the sentences into a common

space. As such, for a given image after detecting salient

image regions, detailed phrases can be retrieved to describe

those image regions. Since long sentences are decomposed

as short phrases, many diverse and subtle phrases could be

produced. Besides, since more diverse phrases are mapped

into the embedding space, we can learn a much denser em-

bedding space so that it is possible to find a better and more

expressive phrase to describe an image or an image region.

However, most previous methods cannot naturally rep-

resent the phrases within sentences, and hence cannot map

them into the embedding space. The main reason is that the

neural networks (e.g., RNN [10] [9]) adopted for building

sentence representations often have a chain structure, i.e., a

basic unit is unfolded one by one through a chain structure.

Therefore, the full sentences are naturally represented with

the last hidden state of the chain structured neural network

since it encodes all the words within the sentence. But it is

difficult to directly build representations for phrases within

sentences.
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Moreover, previous methods are only able to utilize the

correspondences between whole images and full sentences.

But there are many fine-grained correspondences between

image regions and short phrases, which can be utilized to

boost the learning of the embedding space [15]. As shown

in Fig. 2, besides the sentence-level correspondence be-

tween the sentence ‘a cat sat on a mat.’ and the whole im-

age, there is a correspondence between the phrase ‘a cat’

and the corresponding image region, etc. Therefore, it is

beneficial to exploit and utilize those fine-grained ‘phrase-

region’ correspondences to boost the embedding learning.

To address the two problems above, we propose a Hi-

erarchical Multimodal LSTM (HM-LSTM) model. In par-

ticular, our HM-LSTM model has a hierarchical structure,

where the intermediate nodes represent phrases and regions,

while the root nodes represent the full sentences and whole

images, as shown in Fig. 4. Thus, our model can naturally

and jointly learn the embeddings of all sentences, phrases,

images and image regions. More importantly, there are hi-
erarchical relations between sentences and phrases, and be-

tween whole images and image regions. For example, a

‘parent’ phrase (e.g., ‘a cat sat on the mat’) is related to

its ‘children’ phrases (e.g., ‘a cat’ and ‘the mat’, mean-

while the ‘parent’ image region covers the two ‘children’

image regions. Since our model has a hierarchical structure,

we can explicitly exploit such hierarchical relations when

jointly learning their embeddings. Compared with previous

visual-semantic models, our model can map phrases as well

as image regions into the embedding space, and hence we

can learn a dense embedding space, as shown in Fig. 2.

When building representations for phrases, the syntax of

phrases is explicitly considered in our model. This is due

to that image descriptions often make frequent references to

objects, therefore noun phrases in a sentence are often more

important than the other phrases (e.g., verb phrases). There-

fore, noun phrases and the other phrases are distinctively

modeled in our HM-LSTM model, i.e., our HM-LSTM

model is a syntax-aware model, which is more suitable for

the image captioning task.

Note that the fine-grained ‘phrase-region’ correspon-

dences can be automatically established along with the em-

bedding learning. In other words, we conduct dense visual-

semantic embedding in an unsupervised fashion, i.e., with-

out the need of manually annotating the correspondences

between image regions and phrases. Recently, the Dense-

Cap [13] has been proposed for region-oriented captioning.

However, they address this problem in a supervised fash-

ion, i.e., the ‘phrase-region’ correspondences are given for

each training image. Obviously, it is much more expen-

sive to annotate such fine-grained correspondences espe-

cially for a large scale dataset. In addition, the phrases anno-

tated in the DenseCap are independent of the full sentences,

whereas there are relations among sentences and phrases in

Noun 
Phrase

Noun 
Phrase

Sentence

Verb Phrase

a cat

the mat

‘a cat sat on the mat.’

Verb 
Phrase

‘a cat sat on the mat.’

‘a cat’

‘the mat’

parsing

region proposals

A dense  embedding space

A sentence An image

Figure 2. Hierarchical Multimodal Embedding: each sentence is

decomposed as some phrases by a tree parser, meanwhile some

salient image regions are detected from the image. Then, all of full
sentences, phrases, whole images, and image regions are mapped

into a common space, resulting in a dense embedding space.

our method since the phrases are extracted from the given

sentences.

Besides, the experimental results turn out that the perfor-

mance of general image captioning can also be significantly

improved due to learning a dense embedding space. This

is attributed to the joint embedding of full sentences and

their phrases. Since there are hierarchical relations among

full sentences and their phrases, such relations could ben-

efit both their embedding learning when they are jointly

mapped into the embedding space.

Briefly, our contributions are three-fold:

1. A hierarchical multimodal LSTM model is proposed

for dense visual-semantic embedding, which is able

to jointly learn the embeddings of all the sentences,

phrases, images, and image regions. Moreover, the hi-

erarchical relations among them can be explicitly ex-

ploited in our model.

2. The fine-grained correspondences between phrases

and image regions can be automatically learned and

utilized to boost the learning of the embedding space.

3. Our model is a syntax-aware model where noun

phrases and the other phrases are distinctively modeled

towards the task of image captioning.

2. Related Work
Visual-semantic embedding is closely related to the im-

age captioning. Generally, the methods of image cap-

tioning can be roughly grouped into two categories: im-

age caption ranking and image caption generation. Visual-

semantic embedding is often regarded as a kind of meth-

ods for image caption ranking, i.e., to rank captions given

images [6] [29] [14] [15]. DeViSE [6] is a simple model

for image caption ranking, where sentences are represented



as the mean of their word embeddings. After that, some

sophisticated models such as the SDT-RNN [29] are pro-

posed to learn sentence embedding representations. Re-

cently, Deep Structure-Preserving (DeepSP) [34] is pro-

posed for image-text embedding and achieves the state-of-

the-art performance.

For dense embedding, the most related works are the

DeepVS [14] and the DeFrag [15], which also align words

and short phrases within sentences to bounding boxes. In

DeepVS [14], in order to build phrase representations, they

additionally apply a Markov Random Field (MRF) to con-

nect neighboring words as a phrase. On the contrary, our

hierarchical model can naturally generate syntax-correct

phrases and naturally build their representations. In De-

Frag [15], although the tree parsing is leveraged for phrase

representation, the phrases are independently represented

and hence the tree structure is actually discarded in favor of

a simpler model. On the contrary, the hierarchical relations

among phrases can be explicitly modeled by our method.

Moreover, the phrases are jointly instead of independently

modeled in our approach.

Image Caption Generation. Many methods are proposed

for image caption generation [22] [17] [33] [5] [30]. They

aim to generate descriptions by sampling from conditional

neural language models. Particularly, an ‘encoder-decoder’

framework [17] [3] is often adopted by those methods,

where a CNN is used to represent an image, and an RNN

is used to generate descriptions conditioned on the image

representation.

3. Our Approach
We attempt to map all of full sentences, phrases, whole

images, and image regions into a common space. Therefore,

our approach needs not only to learn the phrase-level corre-

spondences (i.e., the correspondences between phrases and

image regions) but also to learn a multimodal embedding

space containing all the sentences, phrases, images, and im-

age regions.

Specifically, each sentence is first represented as a Con-

stituency Tree with the Stanford Parser [18], where each

intermediate node in the tree indicates a phrase while the

root node indicates the full sentence. Meanwhile, for

each image, the Region Convolutional Neural Network (R-

CNN) [7] is adopted to extract a feature representation for

the image region which is generated by using object pro-

posal methods [32].

Next, if the phrase-level correspondences are known, our

HM-LSTM model can utilize such correspondences to con-

duct the embedding learning. In particular, each loss layer

is introduced to connect a noun phrase node to an image

region, as shown in Fig. 4. At last, all the losses (includ-

ing ‘phrase–region’ losses and ‘sentence-image’ losses) are

simultaneously minimized to learn the embedding space.

Input: the ‘sentence–image’ pairs in the dataset {(Sd, Id)}Dd=1

1. Initialization stage: coarse-grained embedding learning. Only

the known sentence-level correspondences are utilized to learn

a simplified HM-LSTM model. And then, the initial representa-

tions for phrases and image regions are estimated.

2. Loop for t = 1, ..., T :

(a) Phrase-level correspondences learning. Given

the learned representations of phrases and regions,

we establish some ‘phrase–region’ correspondences

{(Sd,k, Id,k)}Kd
k=1 for each image by measuring their

similarity (refers to Section 3.3).

(b) Fine-grained embedding learning. Given the previous

phrase-level correspondences, the HM-LSTM model is

learned to update the phrase and region representations

(refers to Section 3.2.2).

Output: the representations of sentences, phrases, images, and image

regions, i.e., {(hd,k, vd,k)}d=D,k=Kd
d=1,k=0 .

Figure 3. The iterative learning procedure for the hierarchical mul-

timodal embedding.

However, only the sentence-level (rather than the phrase-

level) correspondences are known at the beginning. But if

we have the representations of all phrases and image re-

gions, it is easy to establish their correspondences, e.g.,
by measuring the similarities between their representations.

Thus, in our approach we take an alternative learning pro-

cedure for the embedding learning, i.e., to learn the multi-

modal embedding space and those phrase-level correspon-

dences alternatively.

In particular, we have an initial learning stage, where

only the ‘sentence–image’ losses are minimized to learn a

simplified HM-LSTM model. As a result, we are able to

produce the initial representations for all the phrases and

image regions, which can be further used to construct the

initial phrase-level correspondences. After that, a full ver-

sion of HM-LSTM model (both sentence-level and phrase-

level losses are minimized) is learned, and the embedding

learning and the correspondences learning can be conducted

iteratively, as shown in Fig. 3.

3.1. Images Embedding

We follow the work of [14] to represent images. In par-

ticular, some object proposals are extracted using the selec-

tive search method [32], and they are represented with an

R-CNN [7]. Following Karpathy et al. [14], we adopt the

top 19 detected locations in addition to the whole image,

and compute the representations based on the pixels Ib in-

side each bounding box as follows:

vm = Wm[CNNθc(Ib)] + bm (1)

where CNN(Ib) transforms the pixels inside the bounding

box Ib into 4096-dimensional activations of the fully con-

nected layer immediately before the classifier.



3.2. Hierarchical Multimodal Embedding

Given the phrase-level correspondences, our HM-LSTM

model is able to learn a dense embedding space contain-

ing all the sentences, phrases, images, and image regions.

In particular, we first review the Tree-LSTM model [31]

which was recently proposed for sentence embedding. Then

it is extended to a syntax-aware model, namely Hierarchi-

cal LSTM (H-LSTM) model, where noun phrases and the

other phrases are distinctively modeled. At last, our HM-

LSTM model is proposed based on the H-LSTM model,

which is a multimodal model for joint embedding of sen-

tences, phrases, images, and image regions.

3.2.1 Hierarchical LSTM

Recently, the Tree-LSTM model [31] has been proposed to

explicitly model the hierarchical structure of sentences. In

particular, a sentence is parsed as a tree, where the root in-

dicates the full sentence and the intermediate nodes indicate

the phrases within the sentence.

In Tree-LSTM, children nodes are equally treated when

connected to their parent node without considering their

syntax type – noun phrase children and the other phrase
children (e.g., verb phrase) are equally treated. However,

since our task mostly focuses on objects, noun phrases and

the other phrases are modeled with different emphasis, i.e.,
the noun phrase children should have larger contributions

than the other phrase children.

To this end, we extend the Tree-LSTM as a syntax-aware

model, namely Hierarchical LSTM (H-LSTM) model.

Specifically, each unit of H-LSTM (indexed by j) contains

an input gate ij , an output gate oj , a memory cell cj , and a

hidden state hj . Suppose there are N(j) noun phrase chil-

dren for j, and N(j) the other phrase children for j, each

H-LSTM unit will have N(j) forget gates f̂jk, k ∈ N(j)
and N(j) forget gates f jl, l ∈ N(j), as in Eq (3) and Eq (4).

For a parent node j, the hidden state of its noun phrase

children hk, k ∈ N(j) and the other phrase children hl, l ∈
N(j) are respectively summed up (denoted as ĥj and hj)

before impacting the parent node j, as in Eq (2). Further-

more, the ĥj and hj have different effects on the input gate

ij by using distinct parameters Û (o) and U
(o)

, as shown in

Eq (5). It is similar for the output gate oj and memory cell

cj , as shown in Eq (6), and Eq (7). This allows the H-LSTM

to sufficiently consider the syntax type of children nodes.

ĥj =
∑

k∈N(j)

hk; hj =
∑

l∈N(j)

hl (2)

f̂jk =σ(W (f)xj + Û (f)hk + b(f)), k ∈ N(j) (3)

f jl =σ(W (f)xj + U
(f)

hl + b(f)), l ∈ N(j) (4)

NP

NP

VP

sentence

VP

Figure 4. The structure of our HM-LSTM. Each sentence is parsed

as a tree, where the intermediate nodes indicate the phrases within

the sentence. Some noun phrases (NP) hd,k are associated to the

corresponding image regions vd,k by specific loss layers lossd,k.

ij =σ(W (i)xj + Û (i)ĥj + U
(i)
hj + b(i)) (5)

oj =σ(W (o)xj + Û (o)ĥj + U
(o)

hj + b(o)) (6)

uj =tanh(W (u)xj + Û (u)ĥj + U
(u)

hj + b(u))

cj =ij � uj +
∑

k∈N(j)

f̂jkck +
∑

l∈N(j)

f jlcl (7)

hj =oj � tanh(cj) (8)

As the standard LSTM, each H-LSTM leaf node takes an

input vector xj . In our applications, each xj is a vector rep-

resentation of a word, which is determined as xj = WwIt,

where It is an indicator column vector that has a single one

at the index of the t-th word in a word vocabulary. The

weights Ww specify a word embedding matrix that we ini-

tialize with 300-dimensional word2vec [24] weights and

keep fixed due to overfitting concerns. In addition, as the

Tree-LSTM model, the hidden state hj of node j is regarded

as the representation of the corresponding phrase.

3.2.2 Hierarchical Multimodal LSTM

Based on the H-LSTM, we propose a Hierarchical Multi-

modal LSTM (HM-LSTM) to jointly embed all of images,

image regions, sentences, and phrases into a common space.

Let Id,k denote the k-th image region in the d-th im-

age, Sd,k denote the corresponding phrase. And let Id,0
denote the d-th full image, and Sd,0 denote the corre-

sponding full sentence. If all the ‘phrase-region’ pairs

{(Sd,k, Id,k)}D,Kd

d=1,k=0 are known, we learn the HM-LSTM

as follows: a H-LSTM model is first constructed for each

sentence, and for each ‘phrase-region’ pair (Sd,k, Id,k) a

loss layer lossd,k is introduced. Inspired by DeepSP [34],

we introduce a two-branch-network instead of a simple

loss layer for each ‘phrase-region’ pair. Specifically, each

branch is composed of one fully connected layers (Wt for

text and Wm for images), one Batch Normalization (BN)

layer [12], and one L2-normalization layer, as shown in



Fig 4. Note that the batch normalization could accelerate

the training and also make gradient updates more stable.

Let vd,k indicate the representation of the Id,k, and hd,k

indicate the representation of the Sd,k. We can define a scor-

ing function s(vd,k, hd,k) = vd,k ·hd,k to measure their sim-

ilarity. Therefore, for each ‘phrase-region’ pair (Sd,k, Id,k),
we define a contrastive loss to measure the distance between

their representations, as the following,

lossd,k =
∑
l

max{0,m− s(vd,k, hd,k) + s(vd,k, hd,l)}

+
∑
l

max{0,m− s(hd,k, vd,k) + s(hd,k, vd,l)}

(9)

where m is the margin, hd,l is a contrastive phrase for image

region vd,k, and vice-versa with vd,l.
Next, the total loss can be defined by the weighted sum

of all losses, as the following,

Loss =
D∑

d=1

Kd∑
k=0

wd,klossd,k (10)

where wd,k is the weight for the k-th ‘phrase-image region’

pair. The lossd,0 indicates the loss at the root layer for the

d-th image, and lossd,k, k = 1, . . . ,Kd indicates the loss at

the intermediate layer, as shown in Fig. 4.

The weight wd,k can be determined from the learning of

phrase-level correspondences, e.g., the wd,k is determined

according to the confidence of the correspondence for the

k-th ‘phrase-region’ pair.

Note that our HM-LSTM model is learned with the

Back-propagation Through Structure (BPTS) algorithm [8],

where the errors of different loss functions are respectively

injected to the corresponding loss layers, and back propa-

gated from root node to leaf nodes along the tree structure.

3.3. Phrase-level Correspondences

Before the learning of the HM-LSTM, we need to ob-

tain the phrase-level correspondences. We can address this

problem by measuring the representation similarities among

phrase candidates and image region candidates.

Specifically, given the image region candidates (i.e., the

top-19 object proposals), their representations can be easily

obtained according to Eq (1). Meanwhile, each sentence is

parsed as a tree, where each intermediate node in the tree

represents a phrase. Due to that we are just interested in

objects in an image, only noun phrases are selected as the

phrase candidates. Such selection is trivial since the syntax

type of each phrase (i.e., noun phrase, verb phrase, adjective

phrase, etc.) is available after parsing.

NP VP

sitting PP

PP

NP

twopeople

on NP

rocking chairs

on

the deck

two people

rocking chairs

two people sitting on rocking chairs 

the deck

NP

Two people sitting on rocking 
chairs on the deck.

Figure 5. Correspondences between phrases and image regions.

With those image region and phrase candidates, we can

establish the ‘phrase-region’ correspondences according to

their representations. In particular, we compute a matrix S
to measure the similarities of representations for those can-

didates, where each element sij = vi · hj indicates the sim-

ilarity score between the image region vi and the phrase hj .

Therefore, for each phrase we select the best matched im-

age region, and thus we can establish those ‘phrase-image

region’ pairs, as shown in Fig 5. Besides, for each gener-

ated ‘phrase-region’ pair (vi, hj), their similarity score sij
is regarded as the confidence of their correspondence, which

is used to determine the weight of this correspondence, as

shown in Eq (10).

3.4. Initialization and Optimization

Initialization. At the initial learning stage, the initial

representations for all of sentences, phrases, images, and

image regions are obtained by learning a simplified HM-
LSTM model – only the losses at the root {lossd,0}Dd=1

are minimized and the other losses {lossd,k}D,Kd

d=1,k=1 are

neglected. Obviously, only the sentence-level correspon-

dences are used to learn the simplified HM-LSTM.

Optimization. The CNN part of our model comes from

Karpathy et al. [14], which is pre-trained on ImageNet [4]

and fine tuned on the 200 classes of the ImageNet Detection

Challenge [28]. We use Adam [16] to optimize the HM-

LSTM with a learning rate of 8 × 10−3. In particular, we

use mini-batches of 64 paired image-sentences for training.

4. Image Caption Ranking

With the learned hierarchical multimodal embedding

model, we can describe a new image with a full sentence,

i.e., image-sentence ranking. In particular, we first extract

image features by using the CNN and retrieve the near-

est sentence vector hd∗,0 ∈ {hd,0}d=D
d=1 in the embedding

space, which is regarded as the caption for the image.

More importantly, our method can produce region-

oriented phrase-level description for a new image. In par-



Table 1. Flickr8K experiments. R@K is Recall@K (high is good).

Med r is the median rank (low is good).

Flickr8K

Model
Image Annotation Image Search

R@1 R@10 Med r R@1 R@10 Med r
Random 0.1 1.1 631 0.1 1.0 500
SDT-RNN [29] 6.0 34.0 23 6.6 31.7 25
DeViSE [6] 4.8 27.3 28 5.9 29.6 29
DeFrag [15] 12.6 44.0 14 9.7 42.5 15
SC-NLM [17] 13.5 45.7 13 10.4 43.7 14
DeepVS [14] 16.5 54.2 7.6 11.8 44.7 12.4
m-RNN [22] 14.5 48.5 11 11.5 42.4 15
NIC [33] 20 61 6 19 64 5
HM-LSTM 27.7 68.6 5 24.4 68.1 4

ticular, after detecting some salient image regions/object

proposals, we can extract the visual features from them,

and retrieve specific and detailed phrases to describe them,

namely region-phrase ranking in this paper.

5. Experiments
We use the Flickr8K [11], Flickr30K [35] [25] and MS-

COCO [20] [2] datasets in our experiments. These datasets

contain 8, 000, 31, 000 and 123, 000 images respectively

and each is annotated with 5 sentences using AMT. For

Flickr8K and Flickr30K, we use 1, 000 images for valida-

tion, 1, 000 for testing and the rest for training, which is

consistent with [11][14]. For MS-COCO we follow [14] to

use 5, 000 images for both validation and testing.

5.1. Image-Sentence Ranking

We first evaluate the proposed method on the task of

image-sentence ranking. We adopt Recall@K as the met-

ric for evaluation, namely the mean number of images for

which the correct caption is ranked within the top-K re-

trieved results (and vice-versa for sentences).

We compare our method with some visual-semantic em-

bedding methods (i.e., ranking-based methods) including

DeViSE, SDT-RNN, and DeFrag. For DeViSE [6], sen-

tences are represented as the mean of their word embed-

dings. The recursive neural network is used to learn sen-

tence representations in SDT-RNN [29]. For DeFrag [15],

sentences are represented as a bag of dependency parses.

In addition, some generation-based methods are also in-

volved in comparison. The m-RNN [22] and m-RNN-

vgg [23] are methods that do not use a ranking loss

and instead optimizes the log-likelihood of predicting the

next word in a sequence conditioned on an image. The

DeepVS [14] is proposed to first learn an embedding space

with a bidirectional-RNN, and then train an RNN sen-

tence generator based on the embedding space. Simi-

larly, the NIC [33] is another method that provides the

visual input directly to the RNN model. Recently, Deep

Structure-Preserving (DeepSP) [34] is proposed for image-

Table 2. Flickr30K experiments. R@K is Recall@K (high is

good). Med r is the median rank (low is good).

Flickr30K

Model
Image Annotation Image Search

R@1 R@10 Med r R@1 R@10 Med r
Random 0.1 1.1 631 0.1 1.0 500
SDT-RNN [29] 9.6 41.1 16 8.9 41.1 16
DeViSE [6] 4.5 29.2 26 6.7 32.7 25
DeFrag [15] 14.2 51.3 10 10.2 44.2 14
SC-NLM [17] 14.8 50.9 10 11.8 46.3 13
DeepVS [14] 22.2 61.4 4.8 15.2 50.5 9.2
m-RNN [22] 18.4 50.9 10 12.6 41.5 16
NIC [33] 17.0 56.0 7 17.0 57.0 7
m-RNN-vgg [23] 35.4 73.7 3 22.8 63.1 5
DeepSP [34] 35.7 74.4 N/A 25.1 66.5 N/A

HM-LSTM 38.1 76.5 3 27.7 68.8 4

Table 3. MS-COCO experiments. R@K is Recall@K (high is

good). Med r is the median rank (low is good).

MS-COCO

Model
Image Annotation Image Search

R@1 R@10 Med r R@1 R@10 Med r
Random 0.1 1.1 631 0.1 1.0 500
DeepVS [14] 36.4 80.9 3 28.1 76.1 3
m-RNN-vgg [23] 41.0 83.5 2 29.0 77.0 3
DeepSP [34] 40.7 85.3 N/A 33.5 83.2 N/A

HM-LSTM 43.9 87.8 2 36.1 86.7 3

text embedding and achieves the state-of-the-art perfor-

mance, where the captions for the same image are encour-

aged to be close to each other.

5.1.1 Results on Flickr8K and Flickr30K

We evaluate our approach on the Flickr8K and Flickr30K.

Particularly, the dimension of the embedding space is set as

512, i.e., hj and vi are 512-dimensional vectors.

The R@K and Med r of different methods are shown in

Table 1 and Table 2. Our model outperforms the ranking-

based methods by a large margin. Besides, our method also

compares favorably with the state-of-the-art methods.

The results of DeepSP [34] in Table 2 are based on the

mean vector representations, i.e., a sentence is represented

as the mean of their word embeddings. This is a fair com-

parison since both our model and this version of DeepSP

are based on the same word embeddings – word2vec repre-

sentation [24]. Note that if more sophisticated sentence rep-

resentations such as Fisher vector (FV) are utilized, the per-

formance of DeepSP could be further improved [34]. How-

ever, the memory cost is huge and hence it is not well-suited

to a large scale image-sentence ranking task.

5.1.2 Results on MS-COCO

On the dataset of MS-COCO, we follow the experimental

setting of [14] to randomly sample 1, 000 images for test-

ing. Specifically, the dimension of the embedding space

is set as 512, and the Multiscale Combinatorial Grouping



(MCG) [1] is adopted to replace the R-CNN to generate ob-

ject proposals.

The results of the ranking tasks are shown in Table 3.

Obviously, we can see that our method significantly outper-

forms the ranking-based methods. Even for the state-of-the-

art methods such as m-RNN-vgg [23] and DeepSP [34], our

approach still compares favorably with them.

From the results of image-sentence ranking on all three

datasets, we have a conclusion that the performance of gen-

eral image captioning could be significantly improved by

learning a dense embedding space. This is attributed to the

joint embedding of full sentences and their phrases. Since

there are hierarchical relations among full sentences and

their phrases, such relations could benefit both their embed-

ding learning when they are jointly represented and mapped

into the embedding space.

5.2. Region-Phrase Ranking

Our method can produce region-oriented phrase-level

description for a new image. Generally, after detecting

some salient image regions/object proposals, our model can

retrieve subtle and detailed phrases to describe them. For

easier evaluation, the image regions are manually annotated

instead of being automatically detected in this experiments.

For quantitative evaluation, we publish a new dataset

based on the MS-COCO, namely MS-COCO-region
dataset. Specifically, 1000 images and corresponding sen-

tences are randomly selected from the MS-COCO valida-

tion set. And then, AMT workers [27] are asked to anno-

tate image regions in those images and associate them to

the phrases within the sentences. Although some phrase-

level captioning datasets such as Visual Genome [19] and

Flickr30k-Entities [26] have been proposed, their phrases

either are freely annotated by workers or have no relations

with the sentences. On the contrary, the phrases in MS-

COCO-region dataset are automatically extracted from the

given sentences, and there are hierarchical relations be-

tween sentences and phrases.

Specifically, for each sentence, 1 ∼ 5 noun phrases are

automatically extracted by using Stanford Parser. For each

image, some AMT workers are asked to annotate 1 ∼ 8 re-

gions and associate them to those extracted phrases. As a re-

sult, 4467 salient regions and 18724 corresponding phrases

are collected in total.

For comparison, DeepVS and m-RNN-vgg are adopted

as baselines, where each region-phrase pair is indepen-

dently fed to those models to obtain their embeddings. The

results of region-phrase ranking are shown in Table 4. Obvi-

ously, our method outperforms both DeepVS and m-RNN-

vgg. It is mainly because (1) the relations among phrases

are better utilized due to the hierarchical structure of our

model, and (2) the chain structured RNN is good at repre-

senting long sequences (i.e., full sentences) instead of short

Table 4. Region-Phrase Ranking. R@K is Recall@K (high is

good). Med r is the median rank (low is good).

Region Annotation
Model R@1 R@5 R@10 Med r
Random 0.02 0.12 0.24 3133
DeepVS [14] 7.2 18.1 26.8 64
m-RNN-vgg [23] 8.1 20.6 28.2 56
HM-LSTM 10.8 22.6 30.7 42

(1) a white and gray cat with a striped tail
(2) a close up of a cat laying next to a mouse
(3) a white and gray cat
(4) a cat with an intent look
(5) his cat below

(a) a region of ‘cat’

(1) a cow standing in the grass with a tag in its ear
(2) a cow with a black face
(3) a cow staring into the camera
(4) mother cow laying next to her baby on the grass
(5) a close up of a black and white cow

(b) a region of ‘cow’

Figure 6. Our approach can produce subtle and detailed descrip-

tions for an image region. Besides, many descriptions are diverse

so that they can describe different aspects of an object.

sequences (i.e., phrases). So we have a conclusion that our

model can jointly represent short phrases along with long

sentences, and better utilize their relations as well.

Qualitative results. Our method can describe image re-

gions with detailed and subtle phrases. For example, for the

Fig. 6(a) previous methods tend to describe it with a gen-

eral and overview description, e.g., ‘A cat sitting under an

umbrella’. In contrast, our method targets a salient image

region (e.g., which is marked by red box), and produce de-

tailed and subtle descriptions such as ‘a white and gray cat

with a strip tail’. Compared to the coarse description ‘a cat’,

our description is more informative and expressive.

In addition, our approach can produce some diverse de-

scriptions for a given image region. As shown in Fig. 6(b),

for the image region containing a ‘cow’, the top-5 retrieved

phrases diversely describe the ‘cow’, e.g., ‘a cow standing

in the grass with a tag in its ear’ focuses on the ear of the

cow, while ‘a cow staring into the camera’ focuses on the

action of the cow. In other words, our approach can di-

versely describe different aspects of an object of interest.

5.3. Discussion

5.3.1 Learned Embedding Space

To intuitively and qualitatively check the properties of the

learned embedding space, we visualize the learned embed-

ding vectors in a 2-D space by using t-SNE [21]. Specif-

ically, we randomly sample 60 images and corresponding

sentences from our MS-COCO testing dataset. And their

embedding vectors are visualized in a 2-D space, as shown

in Fig. 8. Particularly, we connect each image embedding to

5 corresponding sentence embeddings by lines. We can see



(1) two people (2) rocking chairs

(4) two people sitting on rocking chairs

(3) the deck

Two people sitting on rocking chairs on the deck.

(a)

(1) an empty room (2) a plant

(4) a painting (5) a plant and a painting

(3) wall

An empty room containing a plant and a 
painting on the wall.

(b)

(1) modern kitchen (2) food items

(3) cooking and food items

Modern kitchen with assortment of cooking and 
food items on counter.

(c)

Two giraffes and a zebra in an outdoor zoo.

(1) two giraffes (2) a zebra (3) outdoor zoo

(d)

Figure 7. Four examples of the learned correspondences between phrases and image regions. For image (a), we obtain 4 phrases after

sentence parsing: (1) ‘two people’, (2) ‘rocking chairs’, (3) ‘the deck’, and (4) ‘two people sitting on rocking chairs’, meanwhile some

salient image regions are obtained. The learned correspondences between phrases and image regions are indicated by their color, e.g., the

phrase ‘two people’ corresponds to the orange box. Obviously, our approach can learn correct correspondences in most cases. Note that

(d) is a failure example, it is mainly due to that the salient regions do not cover the objects mentioned in its caption.

38: The black dog runs with a ball with two smaller 
dogs behind it.

54: A dog has its head inside a red and green gift bag.
2: A brown dog drinks from a water bottle.

47: A biker rides on a dirt road.
4: Rider jumps snowmobile high in rural area.
59: A person takes a drink of water while riding on a 

bike.

30: The man and woman show off their matching skull 
tattoos.

6: A man and a woman read a book while their friend 
has a drink.

32: Two woman wearing similar shirts walk to the left.

9: A little girl in a red shirt holds on to a pole near a 
street

28: The small girl in the red shirt pushes the little boy.

Figure 8. The visualization of the learned embedding space. Each

image is connected to 5 corresponding sentences by lines. Obvi-

ously, the image and the corresponding sentences are very close

to each other in most cases. Besides, images/sentences with sim-

ilar semantics are also close to each other, e.g., the 38-th, 54-th,

and 2-nd images are all related to ‘Dog’, and their embeddings are

exactly neighbors in the embedding space (within the red circle).

that the learned image embedding is very close to its sen-

tence embeddings in most cases, which demonstrates the

effectiveness of our approach.

Moreover, from Fig. 8 we can see that our model can

learn a semantic embedding space, where images/sentences

with similar semantics will be mapped close to each other.

For example, the 38-th, 54-th, and 2-th images are all related

to ‘Dog’ (as shown by their descriptions). And their learned

embedding vectors are exactly neighbors in the embedding

space (within the red circle).

5.3.2 Learned Phrase-level Correspondences

When learning the dense embedding space, our approach

can automatically find the ‘phrase-region’ correspondences

in the training data. We evaluate the quality of those learned

correspondences here. Since it is expensive to obtain the

ground truth phrase-level correspondences, we only make

an evaluation on a subset of training data. In practice,

we randomly sample 2000 ‘phrase-region’ pairs from all

learned phrase-level correspondences, and ask 10 users to

judge whether each pair is correct. After a majority voting

among those users, we find out that 82% learned correspon-

dences are correct.

Fig. 7 illustrates four examples of the learned correspon-

dences between phrases and image regions. In most cases,

our approach is able to find correct correspondences. More-

over, there are consistent mappings between the phrases’ as

well as the regions’ hierarchical structures, e.g., the phrase

‘two people sitting on rocking chairs’ is on top of two

phrases ‘two people’ and ‘rocking chairs’, meanwhile the

red box for ‘two people sitting on rocking chairs’ exactly

cover the orange box for ‘two people’ and the green box for

‘rocking chairs’, etc.

6. Conclusion

In this paper, a Hierarchical Multimodal LSTM model

is proposed for dense visual-semantic embedding, which

can jointly learn the embeddings of all the sentences, their

phrases, images, and salient image regions. Due to the hi-

erarchical structure, we can naturally build representations

for all phrases and image regions, and exploit their hierar-

chical relations as well. The experimental results turn out

that the performance of general image captioning can be

significantly improved due to learning a dense embedding

space. Bedsides, our method can produce detailed and di-

verse phrases to describe image salient regions.
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