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ABSTRACT

Semantic segmentation has long been a hot topic, most meth-
ods are the region based method, which lost connection in-
formation to their neighbors. In this paper we propose to en-
code context information into convolutional networks on this
semantic labeling task. Firstly, we propose the nonlocal con-
volution kernel, which extracts feature from larger neighbor
regions without introducing more parameters. Then we build
up a context aware module, which takes both local patch and
nonlocal neighbor information into account. At last we em-
bed the module into convolutional networks and tested the
improvement on benchmark datasets.

Index Terms— Semantic segmentation, sparse kernel,
context aware module

1. INTRODUCTION

Semantic segmentation has long been a hot topic and a com-
panying task with object detection and recognition. It aims at
pixel-wise classification of images and generating meaningful
partitioning areas with objects and scene labels. Many meth-
ods have gained great success in the past a few years. Most
of them are region based supervised learning methods. These
learning methods try to find relevant image features that can
help classify regions into different categories.

The state-of-the-art methods like RCNN [1] and SDS[2]
are all those region-based method. They first partition in-
put images into regions with candidate extraction method like
CPMC [3], MCG [4], and selective search [5]. Then ex-
tract features using convolutional neural networks (CNN) on
those candidate regions. Further, classifiers such as SVM are
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Fig. 1: The nonlocal convolutional filter, compared with the local
filters, our proposed filter can sample a much larger range and hence
give better performance without introducing more parameters. Grid-
s illustrate the proposed nonlocal kernel with stride 1(i.e. a local
kernel), stride 3 and stride 5.

trained on those features to generate class-specific strong clas-
sifiers. At last, assign labels to those regions and we can get
the semantic meaning of our input image.

Region based methods work very well on consistent ob-
ject patches but not for objects with occlusions or objects un-
expectedly grouped in candidate generation procedure. Tex-
ture or context based methods, on the other hand, can handle
this case. For the region based method, when extracting fea-
tures from a region, we are losing the occurrence information
of their neighbors. Context based methods like [6, 7] are pro-
posed under that consideration.

One basic fact is that images, especially those captured
by photographers, always contain not only one specific ob-
ject, but also some accompanies and natural scenery. Context
based methods then make judgment from both region of in-
terest and its neighbors. For example, one region of horse is
most likely accompanied by a grass region other than a road
region. Methods like autocontext [6] are taking advantage of
those neighboring pixels in prediction. Their performance can
be further boosted with more discriminative features.

Recently, there is a rapidly growing literature on convo-
lutional networks, which demonstrates its great capability in
extracting meaningful features, especially in the task of object
recognition [8, 9]. Though it has also achieved state-of-the-art



performance on other tasks like object detection [8, 10, 11],
pose estimation [12, 13], and scene parsing [14], not that
much work has been done on the task of pixel level objec-
t segmentation. For example, RCNN [1] uses convolutional
network at the patch level, which in fact is a patch recogni-
tion problem. In this paper, we attempt to build a context
aware convolutional network and focus on pixel-wise image
segmentation task.

The receptive field is an essential factor to a convolution-
al network’s performance. To maintain good accuracy, one
straightforward thought is to increase the convolutional filter
size, which, may not give good results in practice. Large filter
size does not necessarily leads to more discriminative mod-
els and it is easy to over-fitting because of the co-adaption
problem. That is why Dropout [15] is adopted in enhanc-
ing the generalization of deep learning models. Another way
to achieve that goal is to build a deeper network [16]. De-
spite their cheering performance, the computational cost will
be significantly increased. Our work is based on a new way
of increasing the representation power of the neural network,
by first adding one 1×1 convolutional layer [17], and further
build more complex network structures [8].

Our work makes three key contributions: (1) we define a
nonlocal convolutional kernel, which is very easy to imple-
ment and embed into existing networks. This sparse kernel
gives neurons a larger receptive field without increasing the
number of parameters. (2) we design a context aware mod-
ule, this module adopts both local and nonlocal convolutional
kernels together. This module have the capacity to sample
both local neighbor pixels and nonlocal ones. Moreover, by
parallel local and nonlocal kernel together as a pyramid, this
module has the potential to deal with scale various problems.
(3) we build a convolutional network with this context aware
module and apply it to the problem of image segmentation.
Experiments on three publicly available datasets demonstrate
the good performance of our proposed models.

2. NONLOCAL CONVOLUTIONAL NETWORK

In this section, we give detailed description on how we design
the nonlocal convolutional kernel, the context aware module,
and the entire network architecture.

Nonlocal Convolutional Kernel. Convolutional kernel
is the basis of CNN. A conventional convolutional filter is
represented as Equation 1. For a confidence f , its value is
the nonlinear warping result of a receptive field x ∈ X . x
has the same size as the filter, which is w × h. Function σ is
an activation function and it can be, for example, a Sigmoid,
Tanh, or ReLU. Each filter is working on a consistent patch,
we call it the local kernel.

f = σ(

w∑
i=1

h∑
j=1

ωij · xij + b) (1)

A convolutional layer generates feature maps by warping
a region with a linear filter kernel and then feed them into a
nonlinear activation function. Each single value in the feature
map is an activation response of one receptive field in the pre-
vious layer. In general, a larger receptive field would result
in a better performance after filter warping. However, it also
means more parameters, and hence more prone to overfitting.
That is why Dropout [15] and Rectified Units are designed,
to maintain that only part of those nodes are optimized each
time. One interesting question to ask is, could we maintain
the same level of performance with limited number of param-
eters and yet keep a relatively large field?

To solve the problem, we propose the nonlocal convolu-
tional kernel. That is, for a given region, we are not using
all those pixels as input but just choosing part of them with
a given pattern. This filter pattern samples from part of the
receptive field and combine them together with a linear func-
tion before feeding to a nonlinear activation function, which
works similar as conventional local convolutional layers.

Eq. 2 shows the nonlocal convolutional kernel with the
same number of parameters as Eq. 1. The parameter s is a
step size chosen by hand, which determines the sparsity of a
model. σ is also a non-linear warping function. Here we are
using the sigmoid function for the confidence map, where the
output values are in the range of (0,1).

f
′

= σ(

w∑
i=1

h∑
j=1

ω
′

i,j · xi×s,j×s + b
′
) (2)

While we are using the same number of parameters, the
receptive field of our kernel would bews×hs. In other words,
we could now sampling on a s times larger receptive field than
a local kernel. This, as demonstrated in later experiments, can
contribute a lot on enhancing the network’s performance.

Concatenate Context Aware Module. Another property
of a convolutional network is that it dose not sample from one
single image channel, but from a set of feature maps. And
those feature maps are all filtering results of previous ones. In
this section, we build a module that combines different sparse
filters together, as show in Fig. 2.

The work of auto-context [6] gives a good example of how
to learn an efficient and effective context model from a set
of training images and their corresponding pixel-wise label
maps. First, they would train a set of weak classifiers on local
image patches and generate a set of confidence maps. Then
sampling from those confidence maps to get the context fea-
ture. Combining both the context feature and the image patch
feature together to train a new classifier. After that, use the
new classification maps and again the image patches to get
another classifier. This process is iteratively conducted until
the algorithm converges to the ground truth. And at last, the
budget of classifiers composes the auto-context segmenter.

Fig. 2 gives the structure of our module. In our proposed
context aware network module, we use the same assumption



Co
nv
ol
ut
io
na
l

N
or
m
al
iza

tio
n

3*3filter, with sparse stride 1

3*3filter, with sparse stride 3

3*3filter, with sparse stride 5

Fig. 2: The context aware module we use in our CanNet. It’s com-
posed of one local convolutional kernel (stride 1) and two nonlocal
kernel (stride 3, stride 5). For a local only module with kernel size
3×3, the receptive field is 3×3, while in our module it is 11×11.

that classifiers trained on feature maps should also have the
ability to describe the context information. This works very
much like the “Inception” module proposed by Szegedy et
al. in [8]. The input images would be first enhanced us-
ing algorithms like local contrast normalization. Then a lo-
cal convolutional layer and two non-local convolutional lay-
ers are added in parallel. Those layers would extract features
from a relatively sparse region. In our experiment, we use the
stride of 1, 3, 5 respectively. At last, a convolutional layer
is added again. This layer is for the combination of both lo-
cal and nonlocal feature maps, and works in the same way as
the NiN [17]. For each single confidence value in the mod-
ule, it gets a expanded receptive field taking advantage of the
nonlocal part.

Nonlocal Convolutional Network. Our context aware
nonlocal convolutional network (CanNet) mainly contains 3
modules. The first module is a conventional convolutional
layer followed by a max-pooling layer. The second and third
module are the proposed context aware modules.

Our base layer is designed for the goal of image noise re-
moval and feature enhancement. The following two stacked
context aware modules work for extracting features and gen-
erating confidence maps. The very last layer outputs our pre-
diction map and it’s the same size as ground truth image.

Training the CanNet. Our objective is to get a confi-
dence map from the network of whether one pixel in the im-
age belongs to a specific object or not. For each pixel, it’s
confidence value is the probability of this pixel taking label l,
while l ∈ L is the labels in target space. We denote the value
here as p(yi = l|x) ∈ [0, 1]. This value then can be seen as a
result of a regression problem. Given a set of training images
D = (x, y)N , with x, y ∈ RW×H , the problem now is to find
a set of parameters Ω that can minimize the cross-entropy of
the predicted value and the ground truth, see Equation 3.

F now is a set of nonlinear warping functions using the
non-local structure as described in Equation 2.

min
Ω

∑
(x,y)∈D

−F (x) log y − (1− F (x)) log(1− y) (3)

Training our non-local deep network requires estimating
all the weights and biases of each neuron with limited train-
ing dataset. We follow the pipeline of learning a convolutional
network, i.e. first initialize the parameters with random values
and then update them all with fine-tuning. During training,
weights are updated using stochastic gradient descent method.
As we know, this is really time consuming in reality, espe-
cially for tasks like deep neural networks with thousands of
parameters.

Our network does not have that much convoluitonal layers
like [8], so we do not take much considerations about the gra-
dients vanishing problem. However, improving the training
speed is still of interest. As described in [18], pre-training is
very important for feature learning efficiency. Hence, we feed
the idea of layer-wise training into our network as [19, 20]
does.

Firstly, we train the network modules one by one by fixing
its previous layers. The output of each module is bounded to
the ground truth. Then, after each module is trained separate-
ly, we do a back-propagation on the whole network.

3. EXPERIMENTS

To verify the performance of our proposed non-local convo-
lutional kernel and the context aware module, we run several
tests on three publicly available datasets, i.e., the Weizmann
horse dataset [21], the Graz02 dataset [22], and the PASCAL
VOC 2012 segmentation dataset [23].

We test the comparative performance of our proposed
CanNet and a conventional network with only local con-
volutional kernels, we quote it as ‘CanNet-local’ on those
datasets. Both networks have the same number of parameters
and layer-out structures. Moreover, they are initialized with
the same weights.

Results on Horse Dataset. The Wizemann horse dataset
consists of 328 horse images with pixel-wise annotated label
maps. We randomly extract half of those images as training
data and the rest half as the testing data. For comparison, we
choose the equal F-measure as the evaluation metric, follow-
ing what most work does, i.e.,

F1score =
2× Precision×Recall
(Precision+Recall)

(4)

Fig. 3 shows sample result from local only and nonlocal
convolutional kernels. Notice that networks with only local
convolutional kernels face a challenge problem that the horse
trunk is not well detected. That’s because this part does not
have enough texture for the nets to give a good prediction.
The nonlocal kernel, on the other hand, can handle this with
support information from neighboring regions.



Table 1: Results on PASCAL VOC 2012 val. dataset on AP. We get a 5 percent improvement on average.
aero bike bird boat botl bus car cat chair cow table dog horsemoto pers plant sheepsofa train tv mAP

O2P[24] 56.5 19.0 23.0 12.2 11.0 48.8 26.0 43.3 4.7 15.6 7.8 24.2 27.5 32.3 23.5 4.6 32.3 20.7 38.8 32.3 25.2
SDS[2] 68.4 49.4 52.1 32.8 33.0 67.8 53.6 73.9 19.9 43.7 25.7 60.6 55.9 58.9 56.7 28.5 55.6 32.1 64.7 60.0 49.7
CanNet 71.6 55.2 41.4 47.4 24.4 73.3 45.7 68.4 24.9 71.9 50.2 65.5 69.7 66.9 59.6 39.7 70.0 39.5 73.7 35.0 54.7

Fig. 3: Comparison results of conventional local kernel and our non-
local kernel. Column #1 source images; #2 conventional kernel; #3
our kernel; #4 ground truth labels. The nonlocal kernel’s vast sam-
pling region maintains the performance improvement.
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Fig. 4: Results on Horse dataset with various kernel and stride size
using CanNet. Networks from pattern 1 and 2 are of different fil-
ter size 7*7, 11*11 respectively. Note that we can boost the per-
formance with fixed number of parameters by just increasing stride
size.

Fig. 4 presents the comparative tests. We have convolu-
tional network with filter size of 7× 7 and 11× 11, we name
those two networks as pattern 1 and pattern 2 respectively. It
is easy to tell that local convolutional kernel (i.e. stride = 1)
works bad on this segmentation task. And when we increase
the filter sparsity stride size, we get a better performance.

Results on Graz Dataset. The Graz02 dataset is designed
for testing scale and pose changes in visual recognition. In
total, it has three object categories, including 365 images for
bikes, 420 images for cars, and 311 images for people. Each
object is marked out with a mask and some other annotations,
such as occlusion information. In this work, we consider gen-
erating global context message of an object from the image,
hence the occluded part is also marked as part of the object.

We use the predefined train-test protocol to specify the
test and train sets. The results are presented in Table 2. In
general, our method can get a relatively higher average val-
ue. And the nonlocal CanNet gives improvement over the
CanNet-local. One thing to notice is that, for those traditional
methods [25, 26, 27], the segmentation of bikes is the worst
among those three tasks. Convolutional methods, both Can-
Net and CanNet-local, get the best on bikes other than the rest

Table 2: Results on the Graz02 dataset in terms of F1score(%). Note
that all those methods is confronted by bikes, which is a challenging
category, but not CanNet nor CanNet-local. That results from the
fact that convolutional filters are in fact edge or corner detectors.
The more complicated an object, the better performance.

Bikes Cars People Avg.
Aldavert et al. [25] 58.6 62.9 71.9 64.5
CanNet-local 72.1 69.4 59.2 66.9
Kuettel et al. [26] 63.2 74.8 66.4 68.1
Fulkerson et al. [27] 66.1 72.2 72.2 70.2
CanNet 78.0 69.0 65.5 70.8
Lempitsky et al. [28] 83.7 84.9 82.5 83.7

Fig. 5: Sample segmentation results from Graz02 dataset. From left,
the segmentation of bikes, cars and people.

two. That demonstrate the fact that convolutional kernels pre-
serve a good capacity in extracting edges, corners, and objects
with rich textures. Fig. 5 shows some segmentation samples
from our test result.

Results on PASCAL Dataset. In total the dataset has
20 object categories and 2913 images for the task of class
segmentation. In practice, we are using the pre-splitted 1464
training images for training and 1449 validation images for
testing.

Table 1 shows the detailed comparison result with two
state-of-the-art semantic segmentation algorithms O2P [24]
and SDS [2]. This table shows score of the average precision
(AP), which is computed by measuring the area under a pre-
cision recall curve. As presented in the table, our proposed
method performs the best in 15 out of 20 object categories
and reaches a total average precision of 54.7%. These strong
support the efficacy of our proposed model.

4. CONCLUSION

We propose a novel convolutional kernel and build up a con-
text aware module on the task of semantic segmentation. This
structure enables us to sample a input image region in a much
larger field without increasing the number of filter parameter-
s. Experiments on the semantic segmentation dataset demon-
strate the efficacy of our proposed model.
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